Page 658«..1020..657658659660..670680..»

Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine]

By Dr. Matthew Watson

Scientists have promised a lot of regenerative medicine will come from stem cells, but so far progress has been fairly slow: they can stimualte regrowth of heart tissue, make incredibly expesnive artifical blood, orat bestconstruct a short piece of vein. Now, though, scientists are claiming they can grow functional liver.

Nature reports that a team of scientists from Japan has presented its works at a conference, and it's incredible. In fact, George Daley, director of the stem-cell transplantation program at the Boston Children's Hospital in Massachusetts, told Nature that "it blew [his] mind." Wow.

The researchers used stem cells created from human skin cells, then placed the cells on growth plates in a specially designed culture medium. Over the course of nine days, the cells started producing chemicals that a typical liver cell, otherwise known as a hepatocyte, would produce. They then added endothelial and mesenchymal cellswhich form parts of blood vessels and other structural tissues within the bodyto the mix, in the hope that they would be incorporated and begin to help the cells develop a structure akin to the liver.

The result was amazing: two days later, the researchers found the cells assembled into a 5-millimeter-long, three-dimensional lump. That lump was almost identical to something known as a liver budan early stage of liver development. From Nature's report:

"The tissue lacks bile ducts, and the hepatocytes do not form neat plates as they do in a real liver. In that sense, while it does to some degree recapitulate embryonic growth, it does not match the process as faithfully as the optic cup recently reported by another Japanese researcher. But the tissue does have blood vessels that proved functional when it was transplanted under the skin of a mouse. Genetic tests show that the tissue expresses many of the genes expressed in real liver. And, when transferred to the mouse, the tissue was able to metabolize some drugs that human livers metabolize but mouse livers normally cannot. "

While it's not perfect, it's the first time anyone has successfully created part of a functional human organ from stem cells produced from human skin. If scientists hadn't quite managed to deliver on the promise of stem cells so far, they have now. [Nature]

Image by Spirit-Fire under Creative Commons license

Link:
Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine]

To Read More: Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine]
categoriaSkin Stem Cells commentoComments Off on Scientists Can Now Grow Functioning Liver From Stem Cells [Medicine] | dataJune 21st, 2012
Read All

Makucell Unveils Renewnt™, a Revolutionary, Science-driven Skin Care Brand

By NEVAGiles23

SCOTTSDALE, Ariz. & LOS ANGELES--(BUSINESS WIRE)--Makucell, Inc., a pioneering regenerative biotechnology company dedicated to the development, manufacture and distribution of non-prescription products formulated to address the impact of aging and photo-damaged skin unveils the Renewnt (pronounced Re-new-int) brand, a revolutionary science-driven product line. Renewnts proprietary ingredient, Asymmtate, is a new approach to cellular aging, optimizing signals in the Wnt (pronounced wint) pathway to energize the skins stem cells, encouraging youthful cell behavior. The result is younger-looking skin which appears firmer and smoother. This molecular process is the key to our proprietary technology developed at USCs Keck School of Medicine and transferred to Makucells Renewnt skin care line.

We conducted standard industry safety tests, and the results were universally positive; Renewnt products were well tolerated with no adverse effects or safety issues. A combination of clinical trials and in vitro gene expression studies from treated biopsied skin continues to corroborate the aesthetic effects noted in the clinic.

The Makucell Science

The bodys signals govern skin stem cells, controlling the decision to remain dormant, divide or differentiate (become normal, active tissue cells). Signals flow in pathways and multiple paths converge into one the Wnt pathway. Makucells proprietary molecule Asymmtate encourages optimal signaling in the Wnt pathway. Optimal signaling stimulates the skin stem cells to begin the process leading to keratinocytes, fibroblasts and other dermal cells which produce collagen, elastic tissue and substances in the supporting skin matrix. This essential regenerative process is the key differentiator in Makucells Renewnt skin care products.

Michael Kahn, Ph.D. and his team of gifted research scientists at the Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research of the Keck School of Medicine at the University of Southern California developed the revolutionary ingredient, Asymmtate, Makucells core technology. Dr. Mark V. Dahl, Makucell Chief Medical Officer and former President of the American Academy of Dermatology as well as Professor Emeritus at the Mayo Clinic in Arizona, developed the formulations designed to target a specific skin type on a particular area of the body. Makucell has tested all the Renewnt products for safety and efficacy. The products:

Makucell is committed to supporting our claims with results from controlled, blinded studies, explains Dr. Dahl. We conducted standard industry safety tests, and the results were universally positive; Renewnt products were well tolerated with no adverse effects or safety issues. A combination of clinical trials and in vitro gene expression studies from treated biopsied skin continues to corroborate the aesthetic effects noted in the clinic.

Dr. Lawrence Rheins, President and Chief Executive Officer of Makucell, commented, Renewnt delivers extraordinary regenerative ability in a hydrating cream, providing an advanced anti-aging option. Asymmtate in Renewnt wakes-up the skins stem cells which have become sluggish with age, to begin rebuilding the underlying supporting skin matrix. As a result, skin looks plumper and has a rejuvenated, youthful appearance.

Makucells current Renewnt skin care product line includes:

Renewnt for Hydration, a day and night facial moisturizer for a more youthful-looking appearance.

Renewnt for Strength, for the dry, thinning skin on hands and forearms to seal in moisture, repair the signs of aging and restore the essential skin barrier.

Read more:
Makucell Unveils Renewnt™, a Revolutionary, Science-driven Skin Care Brand

To Read More: Makucell Unveils Renewnt™, a Revolutionary, Science-driven Skin Care Brand
categoriaSkin Stem Cells commentoComments Off on Makucell Unveils Renewnt™, a Revolutionary, Science-driven Skin Care Brand | dataJune 21st, 2012
Read All

'Master molecule' may improve stem cell treatment of heart attacks

By Dr. Matthew Watson

ScienceDaily (June 20, 2012) Johns Hopkins researchers have discovered that a single protein molecule may hold the key to turning cardiac stem cells into blood vessels or muscle tissue, a finding that may lead to better ways to treat heart attack patients.

Human heart tissue does not heal well after a heart attack, instead forming debilitating scars. However, for reasons not completely understood, stem cells can assist in this repair process by turning into the cells that make up healthy heart tissue, including heart muscle and blood vessels. Recently, doctors elsewhere have reported promising early results in the use of cardiac stem cells to curb the formation of unhealthy scar tissue after a heart attack. But the discovery of a "master molecule" that guides the destiny of these stem cells could result in even more effective treatments for heart patients, the Johns Hopkins researchers say.

In a study published in the June 5 online edition of journal Science Signaling, the team reported that tinkering with a protein molecule called p190RhoGAP shaped the development of cardiac stem cells, prodding them to become the building blocks for either blood vessels or heart muscle. The team members said that by altering levels of this protein, they were able to affect the future of these stem cells.

"In biology, finding a central regulator like this is like finding a pot of gold," said Andre Levchenko, a biomedical engineering professor and member of the Johns Hopkins Institute for Cell Engineering, who supervised the research effort.

The lead author of the journal article, Kshitiz, a postdoctoral fellow who uses only his first name, said, "Our findings greatly enhance our understanding of stem cell biology and suggest innovative new ways to control the behavior of cardiac stem cells before and after they are transplanted into a patient. This discovery could significantly change the way stem cell therapy is administered in heart patients."

Earlier this year, a medical team at Cedars-Sinai Medical Center in Los Angeles reported initial success in reducing scar tissue in heart attack patients after harvesting some of the patient's own cardiac stem cells, growing more of these cells in a lab and transfusing them back into the patient. Using the stem cells from the patient's own heart prevented the rejection problems that often occur when tissue is transplanted from another person.

Levchenko's team has been trying to figure out what, at the molecular level, causes the stem cells to change into helpful heart tissue. If they could solve this mystery, the researchers hoped the cardiac stem cell technique used by the Los Angeles doctors could be altered to yield even better results.

During their research, the Johns Hopkins team members wondered whether changing the surface on which the harvested stem cells grew would affect the cells' development. The researchers were surprised to find that growing the cells on a surface whose rigidity resembled that of heart tissue caused the stem cells to grow faster and to form blood vessels. This cell population boom had occurred far less often in the stem cells grown in the glass or plastic dishes typically used in biology labs. This result also suggested why formation of cardiac scar tissue, a structure with very different rigidity, can inhibit stem cells naturally residing there from regenerating the heart.

Looking further into this stem cell differentiation, the Johns Hopkins researchers found that the increased cell growth occurred when there was a decrease in the presence of the protein p190RhoGAP. "It was the kind of master regulator of this process," Levchenko said. "And an even bigger surprise was that if we directly forced this molecule to disappear, we no longer needed the special heart-matched surfaces. When the master regulator was missing, the stem cells started to form blood vessels, even on glass."

A final surprise occurred when the team decided to increase the presence of p190RhoGAP, instead of making it disappear. "The stem cells started to turn into cardiac muscle tissue, instead of blood vessels," Levchenko said. "This told us that this amazing molecule was the master regulator not only of the blood vessel development, but that it also determined whether cardiac muscles and blood vessels would develop from the same cells, even though these types of tissue are quite different."

Read the original:
'Master molecule' may improve stem cell treatment of heart attacks

To Read More: 'Master molecule' may improve stem cell treatment of heart attacks
categoriaCardiac Stem Cells commentoComments Off on 'Master molecule' may improve stem cell treatment of heart attacks | dataJune 20th, 2012
Read All

Long-term pesticide exposure is harmful: STM study

By Dr. Matthew Watson

Kolkata, June 20 : Long-time exposure to pesticides via inhalation may cause moderate to severe blood toxicity and reduction in the total number of bone marrow cells, leading to several degenerative diseases like aplastic anaemia, researchers at the School of Tropical Medicine (STM) here say.

The researches arrived at the conclusion from procedures performed on mice.

"As a whole, exposure to pesticides reduced the total number of bone marrow cells or, in other words, suppressed them," Sujata Law, assistant professor (Stem Cell Biology) at STM's Department of Medical Biotechnology, told IANS.

Bone marrow is the soft, flexible tissue found in long bones such as the thigh bone and the hip bone that contain immature cells called stem cells.

Stem cells, particularly the haematopoeitic stem cells (HSC) or the blood-forming stem cells can develop into the following types - red blood cells that carry oxygen, white blood cells that fight infection and platelets that help to clot blood.

So, in effect, bone marrow is the birthplace of these important cells.

"Bone marrow suppression leads to a number of degenerative diseases like aplastic anaemia, where the deficiency in the number of cells in the circulating blood (peripheral cytopenia) is the main feature," Law said.

The exact underlying mechanism is unknown but it has been concluded from the research published in the Journal of Environmental Toxicology that the microenvironment of the stem cells, in which they develop, is somehow deranged and this prevents their development into the various types of cells.

"In order to prevent degenerative diseases related to pesticide exposure, it is of prime importance that those handling pesticides take precautions like wearing protective clothing, including masks and gloves," she said.

"Also pesticides should be stored in properly labelled containers, away from food, and kept out of reach of children and animals," Law said. (IANS)

Continued here:
Long-term pesticide exposure is harmful: STM study

To Read More: Long-term pesticide exposure is harmful: STM study
categoriaBone Marrow Stem Cells commentoComments Off on Long-term pesticide exposure is harmful: STM study | dataJune 20th, 2012
Read All

Understanding of spinal muscular atrophy improved with use of stem cells

By Dr. Matthew Watson

ScienceDaily (June 20, 2012) Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institute's work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

"With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a "disease-in-a-dish" that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesn't allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis -- the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

"Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive," said Dhruv Sareen, director of Cedars-Sinai's Induced Pluripotent Stem Cell Core Facility and a primary author on the study. "This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model -- and then be reproduced in clinical trials."

The study was funded in part by a $1.9 million Tools and Technology grant from the California Institute for Regenerative Medicine aimed at developing new tools and technologies to aid pharmaceutical discoveries for this disease.

Share this story on Facebook, Twitter, and Google:

Other social bookmarking and sharing tools:

More here:
Understanding of spinal muscular atrophy improved with use of stem cells

To Read More: Understanding of spinal muscular atrophy improved with use of stem cells
categoriaSkin Stem Cells commentoComments Off on Understanding of spinal muscular atrophy improved with use of stem cells | dataJune 20th, 2012
Read All

Cedars-Sinai researchers, with stem cells, advance understanding of spinal muscular atrophy

By daniellenierenberg

Public release date: 19-Jun-2012 [ | E-mail | Share ]

Contact: Nicole White nicole.white@cshs.org 310-423-5215 Cedars-Sinai Medical Center

LOS ANGELES (June 19, 2012) Cedars-Sinai's Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institute's work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

"With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process," said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a "disease-in-a-dish" that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, to the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesn't allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

"Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive," said Dhruv Sareen, director of Cedars-Sinai's Induced Pluripotent Stem Cell Core Facility and a primary author on the study. "This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model and then be reproduced in clinical trials."

###

Visit link:
Cedars-Sinai researchers, with stem cells, advance understanding of spinal muscular atrophy

To Read More: Cedars-Sinai researchers, with stem cells, advance understanding of spinal muscular atrophy
categoriaSkin Stem Cells commentoComments Off on Cedars-Sinai researchers, with stem cells, advance understanding of spinal muscular atrophy | dataJune 20th, 2012
Read All

Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy

By Sykes24Tracey

Newswise LOS ANGELES (June 19, 2012) Cedars-Sinais Regenerative Medicine Institute has pioneered research on how motor-neuron cell-death occurs in patients with spinal muscular atrophy, offering an important clue in identifying potential medicines to treat this leading genetic cause of death in infants and toddlers.

The study, published in the June 19 online issue of PLoS ONE, extends the institutes work to employ pluripotent stem cells to find a pharmaceutical treatment for spinal muscular atrophy or SMA, a genetic neuromuscular disease characterized by muscle atrophy and weakness.

With this new understanding of how motor neurons die in spinal muscular atrophy patients, we are an important step closer to identifying drugs that may reverse or prevent that process, said Clive Svendsen, PhD, director of the Cedars-Sinai Regenerative Medicine Institute.

Svendsen and his team have investigated this disease for some time now. In 2009, Nature published a study by Svendsen and his colleagues detailing how skin cells taken from a patient with the disorder were used to generate neurons of the same genetic makeup and characteristics of those affected in the disorder; this created a disease-in-a-dish that could serve as a model for discovering new drugs.

As the disease is unique to humans, previous methods to employ this approach had been unreliable in predicting how it occurs in humans. In the research published in PLoS ONE, to the team reproduced this model with skin cells from multiple patients, taking them back in time to a pluripotent stem cell state (iPS cells), and then driving them forward to study the diseased patient-specific motor neurons.

Children born with this disorder have a genetic mutation that doesnt allow their motor neurons to manufacture a critical protein necessary for them to survive. The study found these cells die through apoptosis the same form of cell death that occurs when the body eliminates old, unnecessary as well as unhealthy cells. As motor neuron cell death progresses, children with the disease experience increasing paralysis and eventually death. There is no effective treatment now for this disease. An estimated one in 35 to one in 60 people are carriers and about in 100,000 newborns have the condition.

Now we are taking these motor neurons (from multiple children with the disease and in their pluripotent state) and screening compounds that can rescue these cells and create the protein necessary for them to survive, said Dhruv Sareen, director of Cedars-Sinais Induced Pluripotent Stem Cell Core Facility and a primary author on the study. This study is an important stepping stone to guide us toward the right kinds of compounds that we hope will be effective in the model and then be reproduced in clinical trials.

The study was funded in part by a $1.9 million Tools and Technology grant from the California Institute for Regenerative Medicine aimed at developing new tools and technologies to aid pharmaceutical discoveries for this disease.

# # #

Visit link:
Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy

To Read More: Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy
categoriaSkin Stem Cells commentoComments Off on Researchers, with Stem Cells, Advance Understanding of Spinal Muscular Atrophy | dataJune 20th, 2012
Read All

‘Magical State' Of Embryonic Stem Cells May Help Overcome Hurdles To Therapeutics

By Dr. Matthew Watson

Salk researcher's findings suggest a potentially favorable time to harvest stem cells for therapy and may reveal genes crucial to tissue production

With their potential to treat a wide range of diseases and uncover fundamental processes that lead to those diseases, embryonic stem (ES) cells hold great promise for biomedical science. A number of hurdles, both scientific and non-scientific, however, have precluded scientists from reaching the holy grail of using these special cells to treat heart disease, diabetes, Alzheimer's and other diseases.

In a paper published June 13 in Nature, scientists at the Salk Institute for Biological Studies report discovering that ES cells cycle in and out of a "magical state" in the early stages of embryo development, during which a battery of genes essential for cell potency (the ability of a generic cell to differentiate, or develop, into a cell with specialized functions) is activated. This unique condition, called totipotency, gives ES cells their unique ability to turn into any cell type in the body, thus making them attractive therapeutic targets.

"These findings," says senior authorSamuel L. Pfaff, a professor in Salk'sGene Expression Laboratory, "give new insight into the network of genes important to the developmental potential of cells. We've identified a mechanism that resets embryonic stem cells to a more youthful state, where they are more plastic and therefore potentially more useful in therapeutics against disease, injury and aging."

ES cells are like silly putty that can be induced, under the right circumstances, to become specialized cells-for example, skin cells or pancreatic cells-in the body. In the initial stages of development, when an embryo contains as few as five to eight cells, the stem cells are totipotent and can develop into any cell type. After three to five days, the embryo develops into a ball of cells called a blastocyst. At this stage, the stem cells are pluripotent, meaning they can develop into almost any cell type. In order for cells to differentiate, specific genes within the cells must be turned on.

Pfaff and his colleagues performed RNA sequencing (a new technology derived from genome-sequencing to monitor what genes are active) on immature mouse egg cells, called oocytes, and two-cell-stage embryos to identify genes that are turned on just prior to and immediately following fertilization. Pfaff's team discovered a sequence of genes tied to this privileged state of totipotency and noticed that the genes were activated by retroviruses adjacent to the stem cells.

Nearly 8 percent of the human genome is made up of ancient relics of viral infections that occurred in our ancestors, which have been passed from generation to generation but are unable to produce infections. Pfaff and his collaborators found that cells have used some of these viruses as a tool to regulate the on-off switches for their own genes. "Evolution has said, 'We'll make lemonade out of lemons, and use these viruses to our advantage,'" Pfaff says. Using the remains of ancient viruses to turn on hundreds of genes at a specific moment of time in early embryo development gives cells the ability to turn into any type of tissue in the body.

From their observations, the Salk scientists say these viruses are very tightly controlled-they don't know why-and active only during a short window during embryonic development. The researchers identified ES cells in early embryogenesis and then further developed the embryos and cultured them in a laboratory dish. They found that a rare group of special ES cells activated the viral genes, distinguishing them from other ES cells in the dish. By using the retroviruses to their advantage, Pfaff says, these rare cells reverted to a more plastic, youthful state and thus had greater developmental potential.

Pfaff's team also discovered that nearly all ES cells cycle in and out of this privileged form, a feature of ES cells that has been underappreciated by the scientific community, says first author Todd S. Macfarlan, a former postdoctoral researcher in Pfaff's lab who recently accepted a faculty position at the Eunice Kennedy Shriver National Institute of Child Health and Human Development. "If this cycle is prevented from happening," he says, "the full range of cell potential seems to be limited."

It is too early to tell if this "magical state" is an opportune time to harvest ES cells for therapeutic purposes. But, Pfaff adds, by forcing cells into this privileged status, scientists might be able to identify genes to assist in expanding the types of tissue that can be produced.

See original here:
‘Magical State' Of Embryonic Stem Cells May Help Overcome Hurdles To Therapeutics

To Read More: ‘Magical State' Of Embryonic Stem Cells May Help Overcome Hurdles To Therapeutics
categoriaSkin Stem Cells commentoComments Off on ‘Magical State' Of Embryonic Stem Cells May Help Overcome Hurdles To Therapeutics | dataJune 20th, 2012
Read All

LIFE Focuses on Stem Cell Research – Analyst Blog

By LizaAVILA

Referenced Stocks: ILMN, LIFE, TMO

Given the recent flurry of activities, it seems that Life Technologies Corporation ( LIFE ) is focused on strengthening its foothold in the field of stem cell research. The company recently signed a non-exclusive agreement with iPS Academia of Japan for its induced pluripotent stem (iPS) cell patent portfolio. Based on this agreement, the company will be able to expand its portfolio for the iPS cell research community.

Besides, it is well placed to create iPS cells and differentiate them into various cell types to be used in drug discovery and pre-clinical research. The license also enables Life Technologies to provide creation, differentiation and screening services of iPS cell to scientists globally. We consider the agreement to be a significant achievement for the company in the field of stem cell research as iPS cells are gaining attention for use in the areas of drug discovery, disease research and other areas of biotechnology.

The agreement with iPS Academia of Japan comes on the heels of the partnership with Cellular Dynamics International, the world's largest producer of human cells derived from iPS cells. The partnership will aim at commercializing a set of three new products optimized to consistently develop and grow human iPS cells for both research and bioproduction.

These initiatives undertaken by Life Technologies should strengthen its Research Consumables segment. This segment includes molecular and cell biology reagents, endpoint PCR and other benchtop instruments and consumables. These products include RNAi, DNA synthesis, sample prep, transfection, cloning and protein expression profiling and protein analysis, cell culture media used in research, stem cells and related tools, cellular imaging products, antibodies and cell therapy related products. In the most recent quarter, this division recorded a 4% year-over-year increase in revenues to $420 million on the back of growth in cell culture workflow products, endpoint PCR products and molecular and cell biology consumables.

Life Technologies enjoys a strong position in the life sciences market, though management prefers to maintain a cautious but optimistic outlook for the remainder of the year. We are encouraged by the improvement in margins amidst the tight competitive scenario with the presence of players such as Thermo Fisher Scientific ( TMO ), Illumina ( ILMN ), among others.

We have a Neutral recommendation on Life Technologies. The stock retains a Zacks #3 Rank (hold) in the short term.

The views and opinions expressed herein are the views and opinions of the author and do not necessarily reflect those of The NASDAQ OMX Group, Inc.

See the original post here:
LIFE Focuses on Stem Cell Research - Analyst Blog

To Read More: LIFE Focuses on Stem Cell Research – Analyst Blog
categoriaIPS Cell Therapy commentoComments Off on LIFE Focuses on Stem Cell Research – Analyst Blog | dataJune 20th, 2012
Read All

CBR – World's Largest Stem Cell Bank – Applies Two Decades of Experience to Advance Regenerative Medicine

By Dr. Matthew Watson

SAN BRUNO, Calif., June 20, 2012 /PRNewswire/ -- Twenty years ago this month, CBR (Cord Blood Registry) in partnership with the University of Arizona, processed the first cord blood stem cell sample in the world to be stored specifically for family use. Since 1992, the number of conditions treated with cord blood stem cells has greatly expanded, and so has CBR. Today, CBR is the largest family cord blood bank in the world with more than 425,000 samples in storage a population the size of a major city like Miami. What distinguishes the "city of individuals" with newborn stem cells banked at CBR is the exclusive opportunity to participate in a growing number of ground-breaking clinical trials.

(Photo: http://photos.prnewswire.com/prnh/20120620/SF27549-INFO)

(Logo: http://photos.prnewswire.com/prnh/20120216/AQ54476LOGO)

"As the leader and innovator in family banking, we believe every newborn deserves a healthy future and that we have a responsibility to lead the way," said Heather Brown, vice president of scientific & medical affairs at CBR. "Looking back, the creation of our bank allowed families for the first time to preserve a genetically-related source of newborn stem cells, ready and available if needed for a lifesaving transplant to regenerate a person's immune system after radiation or chemotherapy. As we look to the future, we are helping shape new areas of regenerative medicine. We are the only family bank actively pioneering clinical trials evaluating new therapeutic uses of cord blood stem cells for unexpected injuries and conditions with no current cure."

Expanding Areas of Clinical Research: Helping the Body Heal Injured Nerves Until very recently, the prevailing medical opinion in neurology has been that damage to the central nervous system caused by injuries like birth trauma, accidents or stroke is often permanent. Currently, intervention after injury focuses on stabilizing the patient to minimize damage. However, data from animal research in recent years has challenged this assumption, leading to cord blood stem cell clinical research to study whether these cells may stimulate neural cell and tissue repair to restore function and alleviate neurological impairments.

CBR is taking the lead in moving animal research rapidly into the clinic to investigate the ability for cord blood stem cells to trigger the body's own mechanisms to initiate nerve repair by establishing specific clinical trials at leading medical institutions across the country. By pairing researchers with children who have been diagnosed with chronic conditions like cerebral palsy, traumatic brain injury or hearing loss-- and who also have access to their own cord blood stem cells -- CBR is helping physicians move beyond surgery and drugs to evaluate how newborn stem cells may help the body repair itself.

Celebrating a History of Firsts Throughout its history, CBR has taken many of the first steps to create and advance the notion of preserving and ensuring access to high quality newborn stem cells that are viable for use. Among the company's contributions to stem cell medicine and science, CBR was:

"CBR continuously improves our systems and technology to maintain the highest published cell recovery rate in the industry of 99%, every single time. We treat every sample as if it belongs to our own child or grandchild," says Tom Moore, CEO and founder of CBR. "That care and precision is what we offer clinical researchers, who are partnering exclusively with CBR to evaluate the use of a child's own cord blood stem cells to help treat chronic diseases like cerebral palsy, hearing loss and traumatic brain injury."

About Cord Blood RegistryCBR (Cord Blood Registry) is the world's largest and most experienced cord blood bank.The company has consistently led the industry in technical innovations and safeguards more than 425,000 cord blood collections for individuals and their families. CBR was the first family bank accredited by AABB and the company's quality standards have been recognized through ISO 9001:2008 certificationthe global business standard for quality. CBR has also released more client cord blood units for specific therapeutic use than any other family cord blood bank. Our research and development efforts are focused on helping the world's leading clinical researchers advance regenerative medical therapies.For more information, visit http://www.cordblood.com.

Read more from the original source:
CBR - World's Largest Stem Cell Bank - Applies Two Decades of Experience to Advance Regenerative Medicine

To Read More: CBR – World's Largest Stem Cell Bank – Applies Two Decades of Experience to Advance Regenerative Medicine
categoriaUncategorized commentoComments Off on CBR – World's Largest Stem Cell Bank – Applies Two Decades of Experience to Advance Regenerative Medicine | dataJune 20th, 2012
Read All

LIFE Focuses on Stem Cell Research

By NEVAGiles23

Given the recent flurry of activities, it seems that Life Technologies Corporation (LIFE) is focused on strengthening its foothold in the field of stem cell research. The company recently signed a non-exclusive agreement with iPS Academia of Japan for its induced pluripotent stem (iPS) cell patent portfolio. Based on this agreement, the company will be able to expand its portfolio for the iPS cell research community.

Besides, it is well placed to create iPS cells and differentiate them into various cell types to be used in drug discovery and pre-clinical research. The license also enables Life Technologies to provide creation, differentiation and screening services of iPS cell to scientists globally. We consider the agreement to be a significant achievement for the company in the field of stem cell research as iPS cells are gaining attention for use in the areas of drug discovery, disease research and other areas of biotechnology.

The agreement with iPS Academia of Japan comes on the heels of the partnership with Cellular Dynamics International, the world's largest producer of human cells derived from iPS cells. The partnership will aim at commercializing a set of three new products optimized to consistently develop and grow human iPS cells for both research and bioproduction.

These initiatives undertaken by Life Technologies should strengthen its Research Consumables segment. This segment includes molecular and cell biology reagents, endpoint PCR and other benchtop instruments and consumables. These products include RNAi, DNA synthesis, sample prep, transfection, cloning and protein expression profiling and protein analysis, cell culture media used in research, stem cells and related tools, cellular imaging products, antibodies and cell therapy related products. In the most recent quarter, this division recorded a 4% year-over-year increase in revenues to $420 million on the back of growth in cell culture workflow products, endpoint PCR products and molecular and cell biology consumables.

Life Technologies enjoys a strong position in the life sciences market, though management prefers to maintain a cautious but optimistic outlook for the remainder of the year. We are encouraged by the improvement in margins amidst the tight competitive scenario with the presence of players such as Thermo Fisher Scientific (TMO), Illumina (ILMN), among others.

We have a Neutral recommendation on Life Technologies. The stock retains a Zacks #3 Rank (hold) in the short term.

Read the Full Research Report on TMO

Read the Full Research Report on ILMN

Zacks Investment Research

More From Zacks.com

Here is the original post:
LIFE Focuses on Stem Cell Research

To Read More: LIFE Focuses on Stem Cell Research
categoriaUncategorized commentoComments Off on LIFE Focuses on Stem Cell Research | dataJune 20th, 2012
Read All

Neuralstem Pioneering Efforts In ALS – Analyst Blog

By daniellenierenberg

By Jason Napodano, CFA

Neuralstem, Inc. (NYSE MKT: CUR ) has developed a technology that allows large-scale expansion of human neural stem cells ("hNSC") from all areas of the developing human brain and spinal cord. The company owns of has exclusive license to 25 patients and 29 patent applications pending worldwide in the field of regenerative medicine and cell therapy. Management is currently focusing the company's efforts on replacing damaged, malfunctioning, or dead neural cells with fully functional ones that may be useful in treating many central nervous system diseases and neurodegenerative disorders.

Neuralstem's lead development program is for Amyotrophic Lateral Sclerosis ("ALS"), also known as Lou Gehrig 's disease, named after the famous New York Yankee first baseman who was diagnosed with the disease in 1939, and passed in 1941 at the age of only 37.

ALS Background

ALS is a rapidly progressive neurodegenerative disease characterized by weakness, muscle atrophy and twitching, spasticity, dysarthria (difficulty speaking), dysphagia (difficulty swallowing), and respiratory compromise. The disease is almost always fatal, typically due to respiratory compromise or pneumonia, in two to four years. Initial symptoms of ALS include weakness and/or stiffness followed by muscle atrophy in the arms and legs. This is followed by slurred speech or difficulty swallowing, and loss of tongue mobility. Approximately a third of ALS patients also experience pseudobulbar affect (uncontrollable emotions). As the disease progresses, worsening dysphagia and respiratory failure leads to death. A small percentage of patients may also experience cognitive affects such as frontotemporal dementia and anxiety.

The vast majority (~95%) of cases are idiopathic, although there is a known hereditary factor that leads to familial ALS associated with a defect on the 21st chromosome that accounts for approximately 1.5% of all cases. There are also suspected environmental causative factors, including exposure to a dietary neurotoxin called BMAA and cyanobacteria, and use of pesticides. However, in all cases, the defining factor of ALS is rapid and progressive death of upper and lower motor neurons in the motor cortex of the brain, brain stem, and spinal cord. Prior to their destruction, motor neurons develop proteinaceous inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.

Treatment for ALS is limited, and as of today only riluzole, marketed by Sanofi-Aventis as Rilutek, has been found to improve survival to a modest extent (several months). Riluzole preferentially blocks TTX-sensitive sodium channels, which are associated with damaged neurons. This reduces influx of calcium ions and indirectly prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade, the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damaged (about 10% incidence).

The remaining treatments for ALS are designed to relieve symptoms and improve quality of life. This supportive care includes a multidisciplinary approach that may include medications to reduce fatigue, control spasticity, reduce excess saliva and phlegm, limit sleep disturbances, reduce depression, and limit constipation. As noted above, median survival is two to four years. In the U.S., approximately 30,000 persons are currently living with ALS.

Neuralstem's Approach For ALS

Neuralstem is seeking to treat the symptoms of ALS via transplantation of its hNSCs directly into the gray matter of the patient's spinal cord. In ALS, motor neurons die, leading to paralysis. In preclinical animal work, Neuralstem cells both made synaptic contact with the host motor neurons and expressed neurotrophic growth factors, which are protective of cells.

Go here to see the original:
Neuralstem Pioneering Efforts In ALS - Analyst Blog

To Read More: Neuralstem Pioneering Efforts In ALS – Analyst Blog
categoriaSpinal Cord Stem Cells commentoComments Off on Neuralstem Pioneering Efforts In ALS – Analyst Blog | dataJune 20th, 2012
Read All

CUR – Neuralstem Pioneering Efforts In ALS

By raymumme

As of now, management is planning to conduct the pivotal program on its own, mostly likely seeking funding through grants with the ALS Association and U.S. National Institutes of Health. However, management is also in discussion with potential pharmaceutical partners on the pivotal program. ALS is a highly attractive area for Big Pharma. Depending on the strength of the phase 1 / 2 data, Neuralstem may be able to strike a commercialization partnership in 2014 to help defer the costs of the planned pivotal trial. We expect that any deal with a larger pharmaceutical company would include a substantial upfront payment that Neuralstem would then use to fund expansion of the development platform into new indications, such as spinal cord injury (IND filed) or stroke.

Market Opportunity

In February 2011, the U.S. FDA granted Neuralstem an Orphan Drug designation for its human spinal cord stem cells (HSSC) for the treatment of ALS. As noted above, there are approximately 30,000 patients in the U.S. living with ALS. We estimate that approximately half of these patients are characterized with an FVC > 60% and may be eligible for treatment with Neuralstems hNSCs. Given the Orphan Drug designation, the limited patient population, and the lack of any meaningful treatment options, we think Neuralstem or its commercialization partner could price this therapy at upwards of $100,000. Therefore, the peak market opportunity for Neuralstem is $1.5 billion.

That being said, drug development in ALS has been a graveyard for pharmaceutical companies. One would assume, based on numerous past clinical failures, that Neuralstems chances in ALS are slim. Small molecules including gabapentin, topiramate, celecoxib, tamoxifen, indinavir, minocycline, and xaliproden, many of which are approved for other indications and have posted annual sales over a billion dollars, have all failed human clinical programs for ALS. Even Vitamin E and Creatine have been tested, to little avail, in ALS. Failed mechanisms of action included calcium channel blockers, glutamate regulators, neuroprotectants, immunosuppressants, GABA receptors, anti-inflammatory agents, and antioxidants.

However, there is one thing in common we see in all of the above failures. They are one molecule targeting one mechanism of action or one pathway. ALS is a high complex and largely uncharacterized disease. Neuralstems approach uses human spinal stem cells that, once injected, can provide multiple mechanisms of action on multiple pathways to affect the disease. Plus, Neuralstems approach is highly targeted, with the cells injected directly into the lumbar or cervical spine. Following grafting, the hypothesis is that the cells rebuild circuitry with the patient motor neurons and protect existing neurons from further degradation. Its clearly a unique approach, and one we believe has a better chance of success than many of the previous failed theories enacted over the past decade.

See the rest here:
CUR - Neuralstem Pioneering Efforts In ALS

To Read More: CUR – Neuralstem Pioneering Efforts In ALS
categoriaSpinal Cord Stem Cells commentoComments Off on CUR – Neuralstem Pioneering Efforts In ALS | dataJune 20th, 2012
Read All

Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial

By daniellenierenberg

ROCKVILLE, Md., June 19, 2012 /PRNewswire/ --Neuralstem, Inc. (NYSE MKT: CUR) announced that the first patient to receive stem cell transplantation in both regions of the spinal cord has been treated in the ongoing Phase I trial of its spinal cord neural stem cells in amyotrophic lateral sclerosis (ALS or Lou Gehrig's disease). This is also the 16th patient to be treated in the trial altogether and the first patient returning to the trial for a second treatment. In this treatment, the patient received five injections in the cervical (upper back) region of the spinal cord, in addition to the ten he received previously in the lumbar (lower back) region of the spine, for a total of 15 injections. This is the highest number of injections in the trial so far. Patient 16 is also the first patient in the world to receive stem cell transplants in both the lumbar and cervical regions of the spinal cord in an FDA-approved trial. Two additional previously-treated patients are expected to return to the trial this summer in this cohort, provided they continue to meet the inclusion requirements. The trial is taking place at Emory University Hospital in Atlanta, Georgia.

(Logo: http://photos.prnewswire.com/prnh/20061221/DCTH007LOGO )

"Transplanting the first of the returning patients represents a major milestone in the trial," said Dr. Karl Johe, PhD, Neuralstem's Chairman and Chief Scientific Officer. "The ability to safely administer multiple dosings to these patients is a key enabling step in administering the maximum safe dose. Not only are we dosing patients for a second time in this cohort, we are now dosing in both the lumbar and cervical regions of the spinal cord for the first time, where the stem cell therapy could support both walking and breathing."

About the Trial

The Phase I trial to assess the safety of Neuralstem's spinal cord neural stem cells and intraspinal transplantation method in ALS patients has been underway since January 2010. The trial is designed to enroll up to 18 patients. The first 12 patients were each transplanted in the lumbar (lower back) region of the spine, beginning with non-ambulatory and advancing to ambulatory cohorts.

The trial then advanced to transplantation in the cervical (upper back) region of the spine. The first cohort of three was treated in the cervical region only. The current cohort of three will receive injections in both the cervical and lumbar regions of the spinal cord. In an amendment to the trial design, The Food and Drug Administration (FDA) approved the return of previously-treated patients to this cohort. The first of these returning patients was just treated. The entire 18-patient trial concludes six months after the final surgery.

About Neuralstem

Neuralstem's patented technology enables the ability to produce neural stem cells of the human brain and spinal cord in commercial quantities, and the ability to control the differentiation of these cells constitutively into mature, physiologically relevant human neurons and glia. Neuralstem is in an FDA-approved Phase I safety clinical trial for amyotrophic lateral sclerosis (ALS), often referred to as Lou Gehrig's disease, and has been awarded orphan status designation by the FDA.

In addition to ALS, the company is also targeting major central nervous system conditions with its cell therapy platform, including spinal cord injury, ischemic spastic paraplegia and chronic stroke. The company has submitted an IND (Investigational New Drug) application to the FDA for a Phase I safety trial in chronic spinal cord injury.

Neuralstem also has the ability to generate stable human neural stem cell lines suitable for the systematic screening of large chemical libraries. Through this proprietary screening technology, Neuralstem has discovered and patented compounds that may stimulate the brain's capacity to generate new neurons, possibly reversing the pathologies of some central nervous system conditions. The company has received approval from the FDA to conduct a Phase Ib safety trial evaluating NSI-189, its first neurogenic small molecule compound, for the treatment of major depressive disorder (MDD). Additional indications could include CTE (chronic traumatic encephalopathy), Alzheimer's disease, anxiety, and memory disorders.

Go here to read the rest:
Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial

To Read More: Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial
categoriaSpinal Cord Stem Cells commentoComments Off on Sixteenth Patient Dosed In Neuralstem ALS Stem Cell Trial | dataJune 20th, 2012
Read All

Neuralstem Pioneering Efforts In ALS

By raymumme

By Jason Napodano, CFA

Neuralstem, Inc. (NYSE MKT:CUR) has developed a technology that allows large-scale expansion of human neural stem cells ("hNSC") from all areas of the developing human brain and spinal cord. The company owns of has exclusive license to 25 patients and 29 patent applications pending worldwide in the field of regenerative medicine and cell therapy. Management is currently focusing the company's efforts on replacing damaged, malfunctioning, or dead neural cells with fully functional ones that may be useful in treating many central nervous system diseases and neurodegenerative disorders.

Neuralstems lead development program is for Amyotrophic Lateral Sclerosis ("ALS"), also known as Lou Gehrigs disease, named after the famous New York Yankee first baseman who was diagnosed with the disease in 1939, and passed in 1941 at the age of only 37.

ALS Background

ALS is a rapidly progressive neurodegenerative disease characterized by weakness, muscle atrophy and twitching, spasticity, dysarthria (difficulty speaking), dysphagia (difficulty swallowing), and respiratory compromise. The disease is almost always fatal, typically due to respiratory compromise or pneumonia, in two to four years. Initial symptoms of ALS include weakness and/or stiffness followed by muscle atrophy in the arms and legs. This is followed by slurred speech or difficulty swallowing, and loss of tongue mobility. Approximately a third of ALS patients also experience pseudobulbar affect (uncontrollable emotions). As the disease progresses, worsening dysphagia and respiratory failure leads to death. A small percentage of patients may also experience cognitive affects such as frontotemporal dementia and anxiety.

The vast majority (~95%) of cases are idiopathic, although there is a known hereditary factor that leads to familial ALS associated with a defect on the 21st chromosome that accounts for approximately 1.5% of all cases. There are also suspected environmental causative factors, including exposure to a dietary neurotoxin called BMAA and cyanobacteria, and use of pesticides. However, in all cases, the defining factor of ALS is rapid and progressive death of upper and lower motor neurons in the motor cortex of the brain, brain stem, and spinal cord. Prior to their destruction, motor neurons develop proteinaceous inclusions in their cell bodies and axons. This may be partly due to defects in protein degradation.

Treatment for ALS is limited, and as of today only riluzole, marketed by Sanofi-Aventis as Rilutek, has been found to improve survival to a modest extent (several months). Riluzole preferentially blocks TTX-sensitive sodium channels, which are associated with damaged neurons. This reduces influx of calcium ions and indirectly prevents stimulation of glutamate receptors. Together with direct glutamate receptor blockade, the effect of the neurotransmitter glutamate on motor neurons is greatly reduced. Riluzole does not reverse the damage already done to motor neurons, and people taking it must be monitored for liver damaged (about 10% incidence).

The remaining treatments for ALS are designed to relieve symptoms and improve quality of life. This supportive care includes a multidisciplinary approach that may include medications to reduce fatigue, control spasticity, reduce excess saliva and phlegm, limit sleep disturbances, reduce depression, and limit constipation. As noted above, median survival is two to four years. In the U.S., approximately 30,000 persons are currently living with ALS.

Neuralstems Approach For ALS

Neuralstem is seeking to treat the symptoms of ALS via transplantation of its hNSCs directly into the gray matter of the patients spinal cord. In ALS, motor neurons die, leading to paralysis. In preclinical animal work, Neuralstem cells both made synaptic contact with the host motor neurons and expressed neurotrophic growth factors, which are protective of cells.

Here is the original post:
Neuralstem Pioneering Efforts In ALS

To Read More: Neuralstem Pioneering Efforts In ALS
categoriaSpinal Cord Stem Cells commentoComments Off on Neuralstem Pioneering Efforts In ALS | dataJune 20th, 2012
Read All

Next Generation: The Heart Camera

By LizaAVILA

A new camera system allows researchers to measure multiple cardiac signals at once to understand how they interact to control heart function.

THE DEVICE: A complex interplay of signals governs the hearts rhythm. Voltage changes and calcium flux are both important in controlling heart muscle function, with each signal influencing the others dynamics. Scientists at the University of Oxford have created a single camera system that can capture the dynamics of these signals simultaneously, yielding important insight into their relationship.

Peter Lee and colleagues combined several colors of light emitting diodes (LEDs) with a multi-band emission filter so that one very high speed camera could capture the different wavelengths of light emitted by various fluorescent dyes. By using different colors of LEDs, they were able to stimulate different dyes to measure changes in calcium and voltage across cardiac tissue or single layers of human cardiomyocytes (created from induced pluripotent stem cells).

WHATS NEW:The new setup took advantage of advances in lighting technology, explained Lee. While many older systems used xenon lamps, LEDs are cheap, cover the spectrum from infrared to ultraviolet, and reach peak intensity almost immediatelyallowing for ultra-rapid switching between excitation colors. Many previous systems also relied on a moving wheel to switch between colors, and thus measure different signals, explained Guy Salama, who researches cardiac arrhythmias at the University of Pittsburgh, but was not involved in the new cameras development. The wheels needed to move uniformly without wobbling, which would throw off its precision measurements, said Salama, and meant that each parameter had to be recorded for exactly the same amount of time. But Lees system, which uses electronics to control the length of time each LED shines, allows for different excitation times for each parameter of interestwhich is important as not all physiological changes happen on the same time scale, said Salama. Lees system has also jettisoned the need for moving parts, which can require careful alignment.

Single camera and LED system. Peter Lee

IMPORTANCE: Because calcium and voltage changes interact to control cardiac function, and perturbations in either leading to dysfunctions like arrhythmia, Lees camera system provides researchers with a tool to further investigate the interaction between the two signals, and thus gain a deeper understanding of cardiac function.

Using a single camera with multiple emission filters also allowed Lee and his collaborators to measure calcium properly, Lee explained. Many previous experiments used high-affinity calcium dyes, which bound strongly but could perturb the signal. The strong LEDs allowed for weaker-binding dyes, and ratiometric calcium measurement, meaning the dyes display shifts in emission wavelength upon binding calcium. Researchers can then quantify the concentration of calcium based on the light emissions they detect and calcium flux simultaneously.

Additionally, explained Lee, the simplicity of the system makes it more easily scalable. LEDs are cheap and perform well, and the lack of moving parts makes setup much easier than multi-camera systems that need careful calibration.

NEEDS IMPROVEMENT: As appealingly simple as a one-camera setup is, a single camera and multiple light sources can also introduce new hurdles, explained Salama. Because one camera is being used to capture multiple parameters, this cuts down on the number of image frames that can be devoted to each signal, noted Salama. For example, if a camera is running at 1,000 frames per second, but imaging four signals, only 250 of those frames would capture each parameter.

Salama also feared that lining up the LEDs and camera might result in the different light sources hitting the cardiac tissue at different angles, and bouncing off at different angles, making it difficult for the camera to capture them all. When visualizing the voltage and calcium propagations over a single layer of cells, scientists need to make sure the emissions theyre comparing are coming from the same locationso they arent trying to match voltage changes in one set of cells with calcium fluxes in another. When imaging microscopic-scale changes, Lee works around this problem by merging the lights into one path and using an optical fiber to direct all the colors to one site.

More here:
Next Generation: The Heart Camera

To Read More: Next Generation: The Heart Camera
categoriaCardiac Stem Cells commentoComments Off on Next Generation: The Heart Camera | dataJune 20th, 2012
Read All

French scientists revive stem cells of dead people

By NEVAGiles23

French scientists revive stem cells of dead people

A group from the Pasteur Institute was able to reactivate muscle stem cells from deceased persons after 17 days, which functioned normally after transplant...

by Fabrice Chretien

French scientists were able to revive stem cells of muscle and bone marrow from persons who were already dead for 17 days, reports the journal Nature Communications in a paper released on Wednesday (13th) in France.

A team of researchers from the Pasteur Institute demonstrated that it is possible to reactivate the muscle stem cells from human cadavers and transplant them to make new ones born in perfect condition.

The scientists found that these cells did not die with the person. That's because they reduced their activity to a minimum and, after discarding the mitochondria (small bodies that help with breathing), were in a state of hibernation.

Thus, cells could survive even in an environment so hostile, without oxygen and in the middle of an acid bath, as well as in the case of a muscle injury, "sleeping and waiting out the storm," as Professor Fabrice Chrtien affirmed to the newspaper Libration.

"This reserve of stem cells could serve to make bone marrow transplants used to treat leukemia and blood diseases, among other conditions. They could also address the lack of donors," said Chretien, who led the study alongside researcher, Shahragim Tajbakhsh.

Despite the advances that have also been successfully tested in rats, the experiment showed an increase of one type of substance called ROS, which, in turn, has an incompatibility with the cells and genome, Professor Jean-Marc Lemaitre pointed out to the paper, Le Figaro. Due to this fact, the study still needs to determine whether these new cells, even in perfect condition, can hide still undetected malformations.

Translated from the Portuguese version by:

Read this article:
French scientists revive stem cells of dead people

To Read More: French scientists revive stem cells of dead people
categoriaBone Marrow Stem Cells commentoComments Off on French scientists revive stem cells of dead people | dataJune 20th, 2012
Read All

New method generates cardiac muscle patches from stem cells

By Sykes24Tracey

ScienceDaily (June 19, 2012) A cutting-edge method developed at the University of Michigan Center for Arrhythmia Research successfully uses stem cells to create heart cells capable of mimicking the heart's crucial squeezing action.

The cells displayed activity similar to most people's resting heart rate. At 60 beats per minute, the rhythmic electrical impulse transmission of the engineered cells in the U-M study is 10 times faster than in most other reported stem cell studies.

An image of the electrically stimulated cardiac cells is displayed on the cover of the current issue of Circulation Research, a publication of the American Heart Association.

For those suffering from common, but deadly heart diseases, stem cell biology represents a new medical frontier.

The U-M team of researchers is using stem cells in hopes of helping the 2.5 million people with an arrhythmia, an irregularity in the heart's electrical impulses that can impair the heart's ability to pump blood.

"To date, the majority of studies using induced pluripotent stem cell-derived cardiac muscle cells have focused on single cell functional analysis," says senior author Todd J. Herron, Ph.D., an assistant research professor in the Departments of Internal Medicine and Molecular & Integrative Physiology at the U-M.

"For potential stem cell-based cardiac regeneration therapies for heart disease, however, it is critical to develop multi-cellular tissue like constructs that beat as a single unit," says Herron.

Their objective, working with researchers at the University of Oxford, Imperial College and University of Wisconsin, included developing a bioengineering approach, using stem cells generated from skin biopsies, which can be used to create large numbers of cardiac muscle cells that can transmit uniform electrical impulses and function as a unit.

Furthermore, the team designed a fluorescent imaging platform using light emitting diode (LED) illumination to measure the electrical activity of the cells.

"Action potential and calcium wave impulse propogation trigger each normal heart beat, so it is imperative to record each parameter in bioengineered human cardiac patches," Herron says.

See more here:
New method generates cardiac muscle patches from stem cells

To Read More: New method generates cardiac muscle patches from stem cells
categoriaSkin Stem Cells commentoComments Off on New method generates cardiac muscle patches from stem cells | dataJune 20th, 2012
Read All

Pluristem Therapeutics' Cell Therapy Broadens Addressable Markets – Demonstrates Systemic Effectiveness of …

By raymumme

HAIFA, Israel, June 19, 2012 (GLOBE NEWSWIRE) -- Pluristem Therapeutics, Inc. (PSTI) (TASE:PLTR) announced today at the 2012 Bio International Convention the results of a pre clinical study it conducted measuring the effectiveness of its Placental eXpanded (PLX) cells when administered intramuscularly(IM). Cell therapies are traditionally delivered through intravenous (IV) injections for systemic effect. However, Pluristem's latest findings show that its PLX cells can be effective when injected by needle, into the muscle. Avoiding the use of an IV is simple and more cost-effective. This opens far larger markets for treatments in a wide range of potential outpatient settings and local clinics.

"The ability for IM injections of PLX cells has significant market implications that potentially broaden the indications and frequency with which our cell therapy can be used. We look forward to conducting additional testing of this very promising approach," said Zami Aberman, Chairman and CEO of Pluristem.

The study found that Intramuscularly administered PLX cells are safe, effective, easy to inject and provided systemic therapeutic benefits in a wide range of hematological disorders, as well as primary and secondary bone marrow failure, such as in radiation sickness and possibly for some complications from chemotherapy and radiotherapy.

The results of the study demonstrated a significant survival and recovery rate of bone marrow and peripheral blood counts in animals pre-irradiated by high lethal doses. These findings indicate that the IM route of administration of PLX cells stimulate the hematopoietic stem cells (HSCs) of the bone marrow to produce red and white blood cells as well as platelets crucial for the treatment of hematological disorders. The study was conducted in cooperation with the Sharett Institute of Oncology at Hadassah Hospital in Jerusalem.

"Pluristem is extremely pleased at how convincingly this study's data demonstrates that our PLX cells have the ability to stimulate the HSCs involved in rescuing bone marrow. With PLX cells, we may be able to reverse the traditional mindset that if you want to get a systemic effect, you need to inject the cells intravenously," said Liat Flaishon, MD. PhD. BD Director and the Head of the Radiation project at Pluristem.

"We had announced on May 9, 2012 the successful treatment of a pediatric patient whose bone marrow graft was rescued using our PLX cells. This data demonstrates the basis for the successful treatment. In the treatment conducted by Professor Reuven Or from the Bone Marrow Transplantation Unit at Hadassah, PLX cells were given to this patient intramuscularly as well," added Dr. Flaishon.

Prof. Raphael Gorodetsky, Head of the Laboratory of Biotechnology and Radiobiology in the Cancer Research Laboratories of Sharett Institute of Oncology at Hadassah Hospital, has been conducting the animal studies of Pluristem's PLX cells in the past several months. In these studies PLX cells and control medium were administered intramuscularly to C3H mice previously irradiated by a total body dose of 770cGy. The company previously reported initial results from these studies with respect to Acute Radiation Syndrome.

The key results of the Study include:

- After an initial sharp fall, a significant increase in the total number of bone marrow cells extracted from the major bones at 23 days was recorded: from~16million cells/mouse to ~32 million cells/mouse in the PLX treated (p<0.001). Non-irradiated animals had an average of 40 million cells.

- at 23 days a significant increase in the total number of red blood cells was recorded from 3.5 in the surviving controls to 6 million cells/microliter, in comparing the PLX (p<0.001). Non-irradiated animals had an average of 7 million cells/microliter.

Go here to see the original:
Pluristem Therapeutics' Cell Therapy Broadens Addressable Markets - Demonstrates Systemic Effectiveness of ...

To Read More: Pluristem Therapeutics' Cell Therapy Broadens Addressable Markets – Demonstrates Systemic Effectiveness of …
categoriaUncategorized commentoComments Off on Pluristem Therapeutics' Cell Therapy Broadens Addressable Markets – Demonstrates Systemic Effectiveness of … | dataJune 20th, 2012
Read All

Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

By JoanneRUSSELL25

RIO DE JANEIRO--(BUSINESS WIRE)--

Cryopraxis established in 2001 as the pioneer private umbilical cord blood bank in Brazil will be present at Bio 2012 in Boston. Eduardo Cruz, chairman of the board, will be a speaker at the Brazilian break-out session speaking about The Brazilian Biotechnology Sector and showing the results of the company's commitment to R&D. Cryopraxis has already collected and processed more than 25000 cord blood units (CBU) and is actively involved in several R&D projects in Brazil and abroad.

A spin-off of Cryopraxis, Cellpraxis, has recently finished one of the world's first cell therapy project clinical trials in Brazil: ReACT. ReACT is a stem cell formulation. This regenerative medicine pioneer product aims on treating an orphan disease condition called refractory angina. Refractory angina patients suffer from untreatable severe chest pain and the results of the clinical trial in a 5 years follow up proved ReACT to positively interfere in the course of the pathology. Most of the individuals treated experienced relief in pain and better quality of life. ReACT will be presented at Bio2012 as an example of Brazil's dynamic biotechnology research.

Cryopraxis is accredited by the American Association of Blood Bank since 2009.

According to Tatiana Lima, Technical Director at Cryopraxis, "extensive training and strict adherence to good laboratory practices are basic principles in Cryopraxis' corporate strategy." Janaina Machado, cell lab director describes the company's primary mission: "maximizing safety and efficiency of collection procedures to make sure our clients get what they look for: the highest quality standards."

Cryopraxis is part of Axis Biotec (www.axisbiotec.com.br) and it has the largest biological cryogenic storage facility in Brazil and one of the largest in the World. It is the largest umbilical cord blood bank in Brazil. The company is involved in several research projects in Brazil and abroad.For more information, visitwww.cryopraxis.com.brand http://www.cellpraxis.com

View post:
Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston

To Read More: Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston
categoriaUncategorized commentoComments Off on Cryopraxis, Sponsor of Stem Cell Research is Represented at Bio2012 in Boston | dataJune 20th, 2012
Read All

Page 658«..1020..657658659660..670680..»


Copyright :: 2025