Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications
By LizaAVILA
CLEARWATER, FL--(Marketwire -06/01/12)- Biostem U.S., Corporation (HAIR) (HAIR) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine science sector, has made its Scientific and Medical Board of Advisors publications available on the company website, http://www.biostemus.com.
Chief Executive Officer Dwight Brunoehler stated, "The company is very proud of the many contributions its SAMBA members have made, and continue to make, to the medical community. As their publications and credentials show, this is a very prestigious and influential group. Having worked with them in past projects and now at Biostem, I know them all to be active participants in the development and guidance of the company's objectives. Their diversified areas of expertise and backgrounds are already playing a major role in assisting the company as it moves forward into the expanding field of regenerative medicine."
About Biostem U.S., Corporation Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S., Corporation is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.
More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.
See the article here:
Biostem U.S., Corporation Presents Scientific and Medical Board of Advisors Publications
Malta opposing EU financing for stem cell research on embryos
By LizaAVILA
Stem cell therapy may one day be used to cure disorders such as Fragile-X syndrome, or Cystic fibrosis and other genetic maladies.
Matthew Vella
The Maltese government wants the European Commission to abandon plans to provide funds for research activities on stem cells that involve "the destruction of human embryos".
In a declaration on the ethical principles for the Horizon 2020 programme, which is an 80 billion fund for the EU's programme for research and innovation to create new jobs, the Maltese government said it wanted more detailed guidelines on the bioethical principles that will guide research programmes.
Horizon 2020 will allow the financing of research on human stem cells - both adult and embryonic - as long as it is permitted by the national laws of member states.
The fund however will not finance human cloning, genetic modification, or the creation of human embryos intended for the purpose of research or stem cell procurement.
The European Commission does not explicitly solicit the use of human embryonic stem cells, but Horizon 2020 allows the use of human stem cells according to the objectives of the research, and only if it has the necessary approvals from the member states.
The Maltese declaration echoes previous statements by the Commission of Catholic Bishops of the EC (Comece), which said Horizon 2020 did not include greater protection of human embryos from stem cell research.
Malta says it does not want any such embryos to be used for stem cell research. The statement by the Maltese government said the Horizon 2020 programme "does not take sufficiently into account the therapeutic potential of human adult stem cells."
Malta wants Europe to commit to a reinforcement of research on human adult stem cells, and that Europe should abstain from financing matters of fundamental ethical principles, which differ among member states.
Read more:
Malta opposing EU financing for stem cell research on embryos
Paralyzed rats walk again
By LizaAVILA
LONDON Scientists in Switzerland have restored full movement to rats paralyzed by spinal cord injuries in a study that spurs hope that the techniques may hold promise for someday treating people with similar injuries.
Gregoire Courtine and his team at Ecole Polytechnique Federale de Lausanne saw rats with severe paralysis walking and running again after a couple of weeks following a combination of electrical and chemical stimulation of the spinal cord together with robotic support.
"Our rats are not only voluntarily initiating a walking gait, but they are soon sprinting, climbing up stairs and avoiding obstacles," said Courtine, whose results from the five-year study will be published in the journal Science on Friday.
Courtine is quick to point out that it remains unclear if a similar technique could help people with spinal cord damage but he adds the technique does hint at new ways of treating paralysis.
Other scientists agree.
"This is ground-breaking research and offers great hope for the future of restoring function to spinal injured patients," said Elizabeth Bradbury, a Medical Research Council senior fellow at King's College London.
But Bradbury notes that very few human spinal cord injuries are the result of a direct cut through the cord, which is what the rats had. Human injuries are most often the result of bruising or compression and it is unclear if the technique could be translated across to this type of injury.
It is also unclear if this kind of electro-chemical "kick-start" could help a spinal cord that has been damaged for a long time, with complications like scar tissue, holes and where a large number of nerve cells and fibres have died or degenerated.
Nevertheless, Courtine's work does demonstrate a way of encouraging and increasing the innate ability of the spinal cord to repair itself, a quality known as neuroplasticity.
Other attempts to repair spinal cords have focused on stem cell therapy, although Geron, the world's leading embryonic stem cell company, last year closed its pioneering work in the field.
Original post:
Paralyzed rats walk again
Paralyzed rats walk again in Swiss study
By Dr. Matthew Watson
LONDON Scientists in Switzerland have restored full movement to rats paralyzed by spinal cord injuries in a study that spurs hope that the techniques may hold promise for someday treating people with similar injuries.
Gregoire Courtine and his team at Ecole Polytechnique Federale de Lausanne saw rats with severe paralysis walking and running again after a couple of weeks following a combination of electrical and chemical stimulation of the spinal cord together with robotic support.
"Our rats are not only voluntarily initiating a walking gait, but they are soon sprinting, climbing up stairs and avoiding obstacles," said Courtine, whose results from the five-year study will be published in the journal Science on Friday.
Courtine is quick to point out that it remains unclear if a similar technique could help people with spinal cord damage but he adds the technique does hint at new ways of treating paralysis.
Other scientists agree.
"This is ground-breaking research and offers great hope for the future of restoring function to spinal injured patients," said Elizabeth Bradbury, a Medical Research Council senior fellow at King's College London.
But Bradbury notes that very few human spinal cord injuries are the result of a direct cut through the cord, which is what the rats had. Human injuries are most often the result of bruising or compression and it is unclear if the technique could be translated across to this type of injury.
It is also unclear if this kind of electro-chemical "kick-start" could help a spinal cord that has been damaged for a long time, with complications like scar tissue, holes and where a large number of nerve cells and fibres have died or degenerated.
Nevertheless, Courtine's work does demonstrate a way of encouraging and increasing the innate ability of the spinal cord to repair itself, a quality known as neuroplasticity.
Other attempts to repair spinal cords have focused on stem cell therapy, although Geron, the world's leading embryonic stem cell company, last year closed its pioneering work in the field.
View post:
Paralyzed rats walk again in Swiss study
Israeli, U.S. drives aiming to increase number of non-Ashkenazi bone marrow donors
By Sykes24Tracey
Health
May 30, 2012
by Suzanne Kurtz, JTA
For nearly a year, Julie Gavrilov has been trying to find a match for her father, Mark.
Diagnosed with a rare and aggressive blood cancer, he needs a stem cell transplant to survive the disease.
A Bukharian Jew born in Uzbekistan, he will have the best chance of survival if he finds a donor from within his own ethnic community.
Since learning of her 58-year-old fathers diagnosis, Gavrilov, an attorney in New York, has organized a donor drive at a Bukharian Jewish community center in the Queens borough of the city, written heartfelt messages for local synagogue newsletters and posted her plea on Facebook.
A compatible donor has yet to be identified, but Gavrilov, 32, is hopeful that the person who can save her fathers life will be found.
It just takes one person, she said.
Finding that person for Jews of non-Ashkenazi descent can be especially difficult.
Excerpt from:
Israeli, U.S. drives aiming to increase number of non-Ashkenazi bone marrow donors
Bone marrow donation easier than ever
By NEVAGiles23
LITTLE ROCK, Ark. (KTHV) - There are two ways to donate bone marrow. The method used depends on the patient and is determined by their doctor. It's easier than ever and one volunteer is making sure that message is told.
It's a touching story, a young woman finds out she has leukemia, her long time friend sets out to help find a match to save her life.
The woman is Leslie Harris, now mother to a healthy baby boy, born theday doctors diagnosed her.Her future is still unsure. After three rounds of chemo, she's waiting for a bone marrow match.
He's not a student, but Colin Hall carries his backpack with him everywhere. Inside: his swabbing kits used to find a potential bone marrow donor for his friend Leslie Harris.
GetSwabbed.orgis out to "defeat blood cancer by empowering people to take action, give bone marrow and save lives." Hall is a volunteer rep for the DKMS organization.
Hall says, "Once I found out about [Leslie's leukemia]I got online to send out for MY free bone marrow kit because she needed a bone marrow transplant."
That urgent and emotional response was just the beginning of Hall's involvement in bone marrow donation work. He says the statistics are daunting, "Only 1 in 20,000 people become a match for somebody. And part of the problem is there is only 2 percentof the population on the registry. So we need to get more people on that registry so more people have a chance of finding a match."
While finding a match for the patient is hard enough, add to that the fact that many qualified donors don't know how easy the process can actually be.
Dr. Steve Medlin, with the Myeloma Institute at UAMS, says technology has come a long way in just a few short years.
"This used to be a painful procedure -or a more difficult procedure anyway-in which we'd have to extract the stem cells from the bone marrow typically from the hip bones. Now it's a much more simple procedure...and much better tolerated. It's just a process that takes maybe an hour or so to get the cathater in and maybe 4 to 6 hours on a machine to collect the stem cells then the cathater's out and the process is finished." says Medlin.
Continue reading here:
Bone marrow donation easier than ever
NeoStem to Present at Six Conferences in June
By raymumme
NEW YORK, May 31, 2012 (GLOBE NEWSWIRE) -- NeoStem, Inc. (NYSE Amex:NBS) ("NeoStem" or the "Company"), an international biopharmaceutical company focused on cell based therapies, announced today that Company management will present at six conferences in June.
International Society for Cellular Therapy Annual Meeting
National Investment Banking Association Conference
International Society for Stem Cell Research 10th Annual Meeting
The Biotechnology Industry Organization (BIO) International Conference
Alliance for Regenerative Medicine -- Clinical Outlooks for Regenerative Medicine 2012
Marcum's Inaugural MicroCap Conference
About NeoStem, Inc.
NeoStem, Inc. ("NeoStem") is a leader in the development and manufacture of cell therapies. NeoStem has a strategic combination of revenues, including that which is derived from the contract manufacturing services performed by Progenitor Cell Therapy, LLC, a NeoStem company. That manufacturing base is one of the few cGMP facilities available for contracting in the burgeoning cell therapy industry, and it is the combination of PCT's core expertise in manufacturing and NeoStem's extensive research capabilities that positions the company as a leader in cell therapy development. Amorcyte, LLC, also a NeoStem company, is developing a cell therapy for the treatment of cardiovascular disease. Amorcyte's lead compound, AMR-001, represents NeoStem's most clinically advanced therapeutic and is enrolling patients in a Phase 2 trial for the preservation of heart function after a heart attack. Amorcyte expects to begin a Phase 1 clinical trial in 2012/2013 for AMR-001 for the treatment of patients with congestive heart failure. Athelos Corporation, also a NeoStem company, is developing a T-cell therapy for a range of autoimmune conditions with its partner Becton-Dickinson. NeoStem's pre-clinical assets include its VSEL(TM) Technology platform for regenerative medicine, which NeoStem believes to be an endogenous, pluripotent, non-embryonic stem cell that has the potential to change the paradigm of cell therapy as we know it today.
For more information on NeoStem, please visit http://www.neostem.com.
Read the rest here:
NeoStem to Present at Six Conferences in June
New Method Turns Embryonic/Induced Pluripotent Stem Cells into Cardiac Muscle Cells
By daniellenierenberg
This finding can help researchers model diseases in the lab, and allow these diseases to be studied
Researchers from the University of Wisconsin-Madison have found a way to turn both embryonic and induced pluripotent stem cells into cardiomyocytes.
Sean Palecek, study leader and professor of chemical and biological engineering at the University of Wisconsin-Madison, along with Timothy Kamp, professor of cardiology at UW School of Medicine and Public Health, and Xiaojun Lian, a UW graduate student, have developed a technique for abundant cardiomyocyte production, which will allow scientists to better understand and treat diseases.
Cardiomyocytes are important cells that make up the beating heart. These cells are extremely difficult to obtain, especially in large quantities, because they only survive for a short period of time when retrieved from the human heart.
But now, the UW researchers have found an inexpensive method for developing an abundance of cardiomyocytes in the laboratory. This finding can help researchers model diseases in the lab, and allow these diseases to be studied. Researchers will also be able to tests drugs that could help fight these diseases, such as heart disease.
"Many forms of heart disease are due to the loss or death of functioning cardiomyocytes, so strategies to replace heart cells in the diseased heart continue to be of interest, said Kamp. "For example, in a large heart attack up to 1 billion cardiomyocytes die. The heart has a limited ability to repair itself, so being able to supply large numbers of potentially patient-matched cardiomyocytes could help."
The UW research team found that changing a signaling pathway called Wnt can help guide stem cell differentiation to cardiomyocytes. They just turned the Wnt pathway on and off at different times using two small molecule chemicals.
"Our protocol is more efficient and robust," said Palecek. "We have been able to reliably generate greater than 80 percent cardiomyocytes in the final population while other methods produce about 30 percent cardiomyocytes with high batch-to-batch variability.
"The biggest advantage of our method is that it uses small molecule chemicals to regulate biological signals. It is completely defined, and therefore more reproducible. And the small molecules are much less expensive than protein growth factors."
This study was published in the journal Proceedings of the National Academy of Sciences.
See the rest here:
New Method Turns Embryonic/Induced Pluripotent Stem Cells into Cardiac Muscle Cells
Skin cells turned into beating heart cells
By JoanneRUSSELL25
KIAH
12:01 p.m. CDT, May 30, 2012
How do you mend a broken heart? Thanks to scientists in Israel, we might soon have an answer.
Dr. Lior Gepstein and his team at Technion-Israel Institute of Technology managed to take skin cells from ailing heart patients and by adding three genes and valproic acid (used to treat epilepsy), they turned the cells into beating heart tissue.
And it was not just any old heart cells, but, according to Gepstein, "heart cells that are healthy, that are young and resemble heart cells at the day that the patient was born."
The researchers put the new beating heart tissue into rat hearts and saw it was not rejected, but seemed to establish connections with the rodents' tissue.
Stem cell experts praised the research as promising but urged people not to expect to be stopping by the clinic for a fresh heart any time soon. Gepstein's researchers say clinical trials should begin within the next 10 years.
See the rest here:
Skin cells turned into beating heart cells
First treatment for Huntington's disease shows promise in rats, Van Andel Institute scientist says
By LizaAVILA
GRAND RAPIDS, MI -- A stem cell treatment investigated for Huntingtons disease holds out hope that scientists will someday be able to reverse damage caused by the degenerative brain disorder.
The technique, which uses reprogrammed skin cells from a Huntingtons patient, successfully restored motor functions in rats, said Dr. Patrik Brundin, a Van Andel Institute researcher who was involved in the study.
Its an interesting step, one weve been hoping for, he said. Its exciting.
The technique also will be tested in treatments for Parkinsons disease, said Brundin, who came to VAI from Sweden in October to lead the institutes Parkinsons research.
Scientists from Sweden, South Korea and the U.S. collaborated on the study, which was published online Monday in the journal Stem Cells.
Brundin said researchers took stem cells derived from the skin of a patient with Huntingtons disease and converted them to brain cells or nerve cells in culture dishes in the lab. The cells were transplanted into the brains of rats that had an experimental form of Huntingtons, and the rats motor functions improved.
The unique features of the (stem cell approach) means that the transplanted cells will be genetically identical to the patient, Jihwan Song, an associate professor at CHA University in Seoul and co-author of the study, said in a statement released by VAI. Therefore, no medications that dampen the immune system to prevent graft rejection will be needed.
Brundin estimated the research might lead to treatments for humans in five to 10 years, although he acknowledged a timeframe is difficult to predict. Researchers are eager to find a new treatment for Huntingtons because there is nothing really powerful to offer currently, he said.
Huntingtons is a genetic disorder affecting one in every 10,000 Americans that slowly diminishes a persons ability to walk, talk and reason. A child of a parent who has Huntingtons has a 50 percent chance of inheriting the gene that causes it.
Medications can relieve some symptoms in some cases, but there are no treatments available that can slow the disease, according to the Huntingtons Disease Society of America.
Go here to see the original:
First treatment for Huntington's disease shows promise in rats, Van Andel Institute scientist says
Researchers restore neuron function to brains damaged by Huntington's disease
By LizaAVILA
Public release date: 29-May-2012 [ | E-mail | Share ]
Contact: Tim Hawkins Tim.Hawkins@vai.org 616-234-5519 Van Andel Research Institute
Grand Rapids, Mich. (May 29, 2012) Researchers from South Korea, Sweden, and the United States have collaborated on a project to restore neuron function to parts of the brain damaged by Huntington's disease (HD) by successfully transplanting HD-induced pluripotent stem cells into animal models.
Induced pluripotent stem cells (iPSCs) can be genetically engineered from human somatic cells such as skin, and can be used to model numerous human diseases. They may also serve as sources of transplantable cells that can be used in novel cell therapies. In the latter case, the patient provides a sample of his or her own skin to the laboratory.
In the current study, experimental animals with damage to a deep brain structure called the striatum (an experimental model of HD) exhibited significant behavioral recovery after receiving transplanted iPS cells. The researchers hope that this approach eventually could be tested in patients for the treatment of HD.
"The unique features of the iPSC approach means that the transplanted cells will be genetically identical to the patient and therefore no medications that dampen the immune system to prevent graft rejection will be needed," said Jihwan Song, D.Phil. Associate Professor and Director of Laboratory of Developmental & Stem Cell Biology at CHA Stem Cell Institute, CHA University, Seoul, South Korea and co-author of the study.
The study, published online this week in Stem Cells, found that transplanted iPSCs initially formed neurons producing GABA, the chief inhibitory neurotransmitter in the mammalian central nervous system, which plays a critical role in regulating neuronal excitability and acts at inhibitory synapses in the brain. GABAergic neurons, located in the striatum, are the cell type most susceptible to degeneration in HD.
Another key point in the study involves the new disease models for HD presented by this method, allowing researchers to study the underlying disease process in detail. Being able to control disease development from such an early stage, using iPS cells, may provide important clues about the very start of disease development in HD. An animal model that closely imitates the real conditions of HD also opens up new and improved opportunities for drug screening.
"Having created a model that mimics HD progression from the initial stages of the disease provides us with a unique experimental platform to study Huntington's disease pathology" said Patrik Brundin, M.D., Ph.D., Director of the Center for Neurodegenerative Science at Van Andel Research Institute (VARI), Head of the Neuronal Survival Unit at Lund University, Sweden, and co-author of the study.
Huntington's disease (HD) is a neurodegenerative genetic disorder that affects muscle coordination and leads to cognitive decline and psychiatric problems. It typically becomes noticeable in mid-adult life, with symptoms beginning between 35 and 44 years of age. Life expectancy following onset of visual symptoms is about 20 years. The worldwide prevalence of HD is 5-10 cases per 100,000 persons. Key to the disease process is the formation of specific protein aggregates (essentially abnormal clumps) inside some neurons.
Go here to see the original:
Researchers restore neuron function to brains damaged by Huntington's disease
Heart-Attack-Patient-Receives-Adult-Stem-Cell-Therapy- – Video
By daniellenierenberg
30-05-2012 10:25
Go here to read the rest:
Heart-Attack-Patient-Receives-Adult-Stem-Cell-Therapy- - Video
CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine
By raymumme
ORANGE, Calif.--(BUSINESS WIRE)--
A CHOC Childrens research project, under the direction of Philip H. Schwartz, Ph.D., senior scientist at the CHOC Childrens Research Institute and managing director of the facilitys National Human Neural Stem Cell Resource, has been awarded a $5.5 million grant from the California Institute for Regenerative Medicine (CIRM). The grant will be used to develop a stem cell-based therapy for the treatment of mucopolysaccharidosis (MPS I), a fatal metabolic disease that causes neurodegeneration, as well as defects in other major organ systems.
Based on a number of medical and experimental observations, children with inherited degenerative diseases of the brain are expected to be among the first to benefit from novel approaches based on stem cell therapy (SCT).
Dr. Schwartz explains, While uncommon, pediatric genetic neurodegenerative diseases account for a large burden of mortality and morbidity in young children. Hematopoietic (bone marrow) stem cell transplant (HSCT) can improve some non-neural symptoms of these diseases, but does not treat the deadly neurodegenerative process. Our approach targeting the effects of the disease on organs besides the brain with HSCT and neurodegeneration with a second stem cell therapy specifically designed to treat the brain is a strategy for whole-body treatment of MPS I. Our approach is also designed to avoid the need for immunosuppressive drugs to prevent rejection of the transplanted cells.
This research is designed to lead to experimental therapy, based on stem cells, by addressing two critical issues: early intervention is required and possible in this patient population; and teaching the immune system not to reject the transplanted cells is required. This research also sets the stage for efficient translation of this technology into clinical practice, by adapting transplant techniques that are standard in clinical practice or in clinical trials, and using laboratory cell biology methods that are easily transferrable to clinical cell manufacturing.
Nationally recognized for his work in the stem cell field, Dr. Schwartz research focuses on the use of stem cells to understand the neurobiological causes of autism and other neurodevelopmental disorders.
Named one of the best childrens hospitals by U.S. News & World Report (2011-2012) and a 2011 Leapfrog Top Hospital, CHOC Children's is exclusively committed to the health and well-being of children through clinical expertise, advocacy, outreach and research that brings advanced treatment to pediatric patients.
View original post here:
CHOC Children’s Research Project Awarded $5.5 Million Grant from the California Institute for Regenerative Medicine
Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(R)
By Dr. Matthew Watson
ARLINGTON HEIGHTS, Ill., May 29, 2012 (GLOBE NEWSWIRE) -- Adipose stem cells (ACSs)--stem cells derived from fat--are a promising source of cells for use in plastic surgery and regenerative medicine, according to a special review in the June issue of Plastic and Reconstructive Surgery(R), the official medical journal of the American Society of Plastic Surgeons (ASPS).
But much more research is needed to establish the safety and effectiveness of any type of ASC therapy in human patients, according to the article by ASPS Member Surgeon Rod Rohrich, MD of University of Texas Southwestern Medical Center, Dallas, and colleagues. Dr. Rohrich is Editor-in-Chief of Plastic and Reconstructive Surgery.
Adipose Stem Cells--Exciting Possibilities, but Proceed with Caution
The authors present an up-to-date review of research on the science and clinical uses of ASCs. Relatively easily derived from human fat, ASCs are "multipotent" cells that can be induced to develop into other kinds of cells--not only fat cells, but also bone, cartilage and muscle cells.
Adipose stem cells promote the development of new blood vessels (angiogenesis) and seem to represent an "immune privileged" set of cells that blocks inflammation. "Clinicians and patients alike have high expectations that ASCs may well be the answer to curing many recalcitrant diseases or to reconstruct anatomical defects," according to Dr. Rohrich and co-authors.
However, even as the number of studies using ASCs increases, there is continued concern about their "true clinical potential." The reviewers write, "For example, there are questions related to isolation and purification of ASCs, their effect on tumor growth, and the enforcement of FDA regulations."
Dr. Rohrich and co-authors performed an in-depth review to identify all known clinical trials of ASCs. So far, most studies have been performed in Europe and Korea; reflecting stringent FDA regulations, only three ASC studies have been performed in the United States to date.
Many Different Uses, But Little Experience So Far
Most ASC clinical trials to date have been performed in plastic surgery--a field with "unique privileged access to adipose tissues." Plastic surgeon-researchers have used ASCs for several types of soft tissue augmentation, such as breast augmentation (including after implant removal) and regeneration of fat in patients with abnormal fat loss (lipodystrophy). Studies exploring the use of ASCs to promote healing of difficult wounds have been reported as well. They have also been used as a method of soft tissue engineering or tissue regeneration, with inconclusive results.
In other specialties, ASCs have been studied for use in treating certain blood and immunologic disorders, heart and vascular problems, and fistulas. Some studies have explored the use of ASCs for generating new bone for use in reconstructive surgery. A few studies have reported promising preliminary results in the treatment of diabetes, multiple sclerosis, and spinal cord injury. No serious adverse events related to ASCs were reported in either group of studies.
Go here to read the rest:
Fat-Derived Stem Cells Show Promise for Regenerative Medicine, Says Review in Plastic and Reconstructive Surgery(R)
Heart Damage Repaired By Reprogramming Resident Fibroblasts into Functioning Heart Cells
By LizaAVILA
LAGUNA HILLS, Calif., May 29, 2012 /PRNewswire/ --LoneStar Heart Inc., today announced the advancement of a new therapeutic strategy aimed at genetic reprogramming of cardiac fibroblasts into functioning heart muscle cells to treat damage following a heart attack and other forms of heart disease. The announcement follows a study conducted by researchers at the University of Texas Southwestern Medical Center (UT Southwestern), published in the on-line May 13th issue of the journal Nature, demonstrating feasibility of the approach. The company has acquired exclusive worldwide rights to the new technology.
The adult human heart has almost no regenerative capacity. Instead of rebuilding muscle tissue after a heart attack, or myocardial infarction, the injured human heart forms fibrous, non-contractile scar tissue lacking muscle or blood vessels. Fibroblasts account for a majority of cells in the heart and are activated following injury to form this fibrotic scar tissue. Fibrosis impedes regeneration of cardiac muscle cells, and contributes to loss of contractile function, ultimately leading to heart failure and death. Therapeutic strategies to promote new muscle formation, while limiting fibrosis, represent an attractive approach for heart repair.
As reported in Nature, Eric N. Olson, Ph.D., and colleagues from UT Southwestern show that four gene-regulatory proteins GATA4, HAND2, MEF2C, and TBX5 (GHMT) can convert cardiac fibroblasts into beating cardiac-like muscle cells. Introduction of these proteins into proliferating fibroblasts in mice reprograms them into functional cardiac-like myocytes, improving cardiac function and reducing fibrosis and adverse remodeling of the heart following myocardial infarction. Using cell lineage-tracing techniques, the investigators conclude that newly formed cardiac-like muscle cells in GHMT-treated hearts arose from pre-existing cardiac fibroblasts. Cardiac imaging studies confirmed the new technique promoted a dramatic increase in cardiac function that was sustained for at least three months following myocardial infarction.
"These studies establish proof-of-concept for in vivo cellular reprogramming as a new approach for heart repair," said Dr. Olson, professor and chair of molecular biology at UT Southwestern, and a co-founder of LoneStar Heart. "However, much work remains to be done to determine if this strategy might eventually be effective in humans. We are working hard toward that goal."
The new reprogramming strategy may provide a novel means of improving cardiac function following injury, bypassing many of the obstacles associated with cellular transplantation. Prior work by Dr. Olson's group and others has shown that GHMT proteins fulfill similar roles in cardiac gene regulation in a wide range of organisms, including humans, highlighting the potential of these proteins to augment function of the injured human heart. While cellular replacement strategies via the introduction of stem cells or other cell types into injured hearts have shown promise, there have been numerous technical and biological hurdles associated with such approaches.
About LoneStar Heart, Inc.LoneStar Heart, Inc. is developing cardiac restorative therapies for patients with heart failure that stimulate the heart's ability to repair itself. Based on its integrated cardiomechanical and biomolecular technologies, the privately held company is advancing a broad portfolio of products to restore the failing heart's structure and function in collaboration with the Texas Heart Institute, UT Southwestern, and a global network of leading clinicians. These products include Algisyl-LVR,cardiac stem-cell modulators, and cellular and genetic therapies delivered as stand-alone treatments, or in combination with the company's biopolymer matrix system.
LoneStar Heart's lead product, Algisyl-LVR, is a single-use, self-gelling biopolymer implanted into the heart's left ventricle during surgery. Providing internal tissue support, Algisyl-LVR is aimed at preventing the progression of heart failure and restoring the heart's normal structure and function with a significant improvement in the patient's quality of life. Classified as a medical device, the product is undergoing a randomized controlled clinical study (AUGMENT-HF) in Europe to evaluate its safety and efficacy in patients with advanced heart failure.
About UT Southwestern Medical CenterUT Southwestern Medical Center, one of the premier medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. Its faculty has many distinguished members, including five who have been awarded Nobel Prizes since 1985. Numbering more than 2,600, the faculty is responsible for groundbreaking medical advances and is committed to quickly translating science-driven research to new clinical treatments. UT Southwestern physicians provide medical care in 40 specialties to more than 100,000 hospitalized patients, and oversee nearly 2 million outpatient visits a year.
Physicians care for patients in the Dallas-based UT Southwestern Medical Center; in Parkland Health & Hospital System, which is staffed primarily by UT Southwestern physicians; and in its affiliated hospitals, Children's Medical Center Dallas, Texas Scottish Rite Hospital for Children and the VA North Texas Health Care System. UT Southwestern programs are offered in Waco, Wichita Falls, Plano/Frisco and Fort Worth. Three degree-granting institutions UT Southwestern Medical School, UT Southwestern Graduate School of Biomedical Sciences and UT Southwestern School of Health Professions train nearly 4,600 students, residents and fellows each year. UT Southwestern researchers undertake more than 3,500 research projects annually, totaling more than $417 million.
Dr. Olson holds the Pogue Distinguished Chair in Research on Cardiac Birth Defects, the Robert A. Welch Distinguished Chair in Science, and the Annie and Willie Nelson Professorship in Stem Cell Research at UT Southwestern.
Read this article:
Heart Damage Repaired By Reprogramming Resident Fibroblasts into Functioning Heart Cells
Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure
By NEVAGiles23
SAN DIEGO, May 29, 2012 (GLOBE NEWSWIRE) -- via PRWEB - Stemedica Cell Technologies, Inc. announced today that its strategic partner in Mexico, Grupo Angeles Health Services, has received approval from Mexico's regulatory agency, COFEPRIS, for a Phase I/II single-blind randomized clinical trial for chronic heart failure. COFEPRIS is the Mexican equivalent of the United States FDA. The clinical trial, to be conducted at multiple hospital sites throughout Mexico, will utilize Stemedica's adult allogeneic ischemia tolerant mesenchymal stem cells (itMSC) delivered via intravenous infusion. The trial will involve three safety cohorts at different dosages, followed by a larger group being treated with the maximum safe dosage. The COFEPRIS approval is the second approval for the use of Stemedica's itMSCs. COFEPRIS approved Stemedica's itMSCs in 2010 for a clinical trial for ischemic stroke. These two trials are the only allogeneic stem cell studies approved by COFEPRIS.
Grupo Angeles is a Mexican company that is 100% integrated into the national healthcare development effort. The company is comprised of 24 state-of-the-art hospitals totaling more than 2,000 beds and 200 operating rooms. Eleven thousand Groupo Angeles physicians annually treat nearly five million patients a year. Of these, more than two million are seen as in-patients. In just over two decades, Groupo Angeles has radically transformed the practice of private medicine in Mexico and contributed decisively to reform in the country's health system. Grupo Angeles hospitals conduct an estimated 100 clinical trials annually, primarily with major global pharmaceutical and medical device companies.
"We are pleased that we will be working with the largest and most prestigious private medical institution in Mexico to study Stemedica's product for this indication. If successful, our stem cells may provide a treatment option for the millions of patients, both in Mexico and internationally, who suffer from this condition," said Maynard Howe, PhD, CEO of Stemedica Cell Technologies, Inc.
Roberto Simon, MD, CEO of Grupo Angeles Health Services, noted, "We are proud to be the first organization to bring regulatory-approved allogeneic stem cell treatment to the people of Mexico. We envision that this type of treatment may well become a standard for improving cardiac status for chronic heart failure patients and are pleased to be partnering with Stemedica, one of the leading companies in the field of regenerative medicine."
Nikolai Tankovich, MD, PhD, President and Chief Medical Officer of Stemedica commented, "For the more than five million North Americans who suffer from chronic heart failure, this is an important trial. Our ischemia tolerant mesenchymal stem cells hold the potential to improve ejection fraction--the amount of blood pumped with each heart beat--and therefore, dramatically improve quality of life."
For more information about Stemedica please contact Dave McGuigan at dmcguigan(at)stemedica(dot)com. For more information about Grupo Angeles and the chronic heart failure trial please contact Paulo Yberri at pyberri(at)angelesehealth(dot)com.
About Stemedica Cell Technologies, Inc. Stemedica Cell Technologies, Inc.(http://www.stemedica.com) is a specialty bio-pharmaceutical company committed to the manufacturing and development of best-in-class allogeneic adult stem cells and stem cell factors for use by approved research institutions and hospitals for pre-clinical and clinical (human) trials. The company is a government licensed manufacturer of clinical grade stem cells and is approved by the FDA for its clinical trials for ischemic stroke. Stemedica is currently developing regulatory pathways for a number of medical indications using adult allogeneic stem cells. The Company is headquartered in San Diego, California.
This article was originally distributed on PRWeb. For the original version including any supplementary images or video, visit http://www.prweb.com/releases/stemedica-clinical-trial/chronic-heart-failure/prweb9550806.htm
Original post:
Stemedica Stem Cells Approved for Clinical Trials in Mexico for Chronic Heart Failure
Biostem Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors
By NEVAGiles23
More Topics: Choose a Sector Accounting Firms Advertising/Media/Communications Capital CEO/Board General Business Health/Biotech Internet/Technology Investment Firms Law Firms Mergers & Acquisitions Money Managers People Private Companies Public Companies Venture Capital
Posted May 29, 2012
Philip A. Lowry
Highly Recognized Bone Marrow Stem Cell Transplant Specialist Added to Existing Member Expertise in Maternal Fetal Medicine, Cardiology, and Pathology
CLEARWATER, FL -- Biostem U.S., Corporation, (OTCQB: HAIR) (PINKSHEETS: HAIR) a stem cell regenerative medicine sciences company, announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).
According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."
Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."
Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.
Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.
Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.
More:
Biostem Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors
Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 …
By NEVAGiles23
SUNRISE, Fla., May 29, 2012 (GLOBE NEWSWIRE) -- Bioheart, Inc. (OTCBB:BHRT.OB - News) announced today that it will offer another laboratory training course in partnership with the Ageless Regenerative Institute, an organization dedicated to the standardization of cell regenerative medicine, on Saturday/Sunday June 23-24, 2012. Attendees will participate in hands on, in depth training in laboratory practices in stem cell science at Bioheart, Inc.'s corporate headquarters and clean room in Sunrise, Florida. The course was designed for Laboratory technicians, Students, Physicians and Physician Assistants.
"Attendees will graduate from this one-of-a-kind course with an extensive understanding of stem cell science laboratory practices," said Kristin Comella, Chief Scientific Officer, Bioheart, Inc. "Previous attendees described the course as incredibly well orchestrated providing comprehensive know how for laboratory start up."
An emerging field with tremendous opportunities, adult stem cell research has been shown to regenerate and repair injured or diseased structures via the release of bioactive tissue growth factors and cytokines. This is the second time that The Ageless Regenerative Institute has partnered with Bioheart, Inc. to provide hands-on training in a stem cell laboratory. This course provides instruction regarding how to grow stem cells and perform quality control testing in an actual cGMP facility following FDA regulations.
The course goals and objectives include reviewing stem cell types and characteristics; learning cell culture including plating, trypsinization and harvesting, and cryopreservation; learning quality control tests including cell count, viability, flow cytometry, endotoxin, mycoplasma, sterility; and learning and performing cGMP functions including clean room maintenance, gowning and environmental monitoring.
For information on costs and to register, visit http://www.agelessregen.com or email: info@agelessregen.com.
About Bioheart, Inc.
Bioheart is committed to maintaining its leading position within the cardiovascular sector of the cell technology industry delivering cell therapies and biologics that help address congestive heart failure, lower limb ischemia, chronic heart ischemia, acute myocardial infarctions and other issues. Bioheart's goals are to cause damaged tissue to be regenerated, when possible, and to improve a patient's quality of life and reduce health care costs and hospitalizations.
Specific to biotechnology, Bioheart is focused on the discovery, development and, subject to regulatory approval, commercialization of autologous cell therapies for the treatment of chronic and acute heart damage and peripheral vascular disease. Its leading product, MyoCell, is a clinical muscle-derived cell therapy designed to populate regions of scar tissue within a patient's heart with new living cells for the purpose of improving cardiac function in chronic heart failure patients. For more information on Bioheart, visit http://www.bioheartinc.com.
About Ageless Regenerative Institute, LLC
The Ageless Regenerative Institute (ARI) is an organization dedicated to the standardization of cell regenerative medicine. The Institute promotes the development of evidence-based standards of excellence in the therapeutic use of adipose-derived stem cells through education, advocacy, and research. ARI has a highly experienced management team with experience in setting up full scale cGMP stem cell manufacturing facilities, stem cell product development & enhancement, developing point-of-care cell production systems, developing culture expanded stem cell production systems, FDA compliance, directing clinical & preclinical studies with multiple cell types for multiple indications, and more. ARI has successfully treated hundreds of patients utilizing these cellular therapies demonstrating both safety and efficacy. For more information about regenerative medicine please visit http://www.agelessregen.com.
See original here:
Bioheart and Ageless Regenerative Partner to Advance Stem Cell Field With New Laboratory Training Program on June 23 ...
Scotland opens stem cell research center and bio-medical incubator
By NEVAGiles23
EDINBURGH, Scotland, May 29, 2012 /PRNewswire/ -- Research into conditions such as multiple sclerosis and heart and liver disease will benefit from multi-million dollar stem cell research and life sciences facilities opened yesterday by HRH, the Princess Royal.
The Princess Royal is to unveil plaques this afternoon at the $85 million Scottish Centre for Regenerative Medicine (SCRM) and $38 million bio-incubator facility, Nine, in Edinburgh.
The University of Edinburgh's Scottish Centre for Regenerative Medicine will carry out cutting-edge stem cell research to help find therapies for patients with conditions such as multiple sclerosis, Parkinson's disease, motor neurone disease, and heart and liver diseases.
The centre is the first large-scale, purpose-built facility of its kind and provides accommodation for up to 250 stem cell scientists. The centre, funded by the University of Edinburgh, Scottish Enterprise, the Medical Research Council (MRC) and the British Heart Foundation through its Mending Broken Hearts Appeal, was opened by the Princess Royal in her role as Chancellor of the University. It includes the most up-to-date facilities in the UK, which meet the highest guidelines, to manufacture stem cell lines that could be used for patient therapies.
Nine, which has been jointly funded by Scottish Enterprise and the UK Government's Department for Business, Innovation and Skills, provides 85,000 square feet of laboratory and office space for both established biotechnology companies and start-up ventures. These could include potential spin-out companies from the University of Edinburgh.
Both buildings form a major investment in research at Edinburgh BioQuarter, which is in the city's Little France area and encompasses the Royal Infirmary of Edinburgh and the University of Edinburgh's Queen's Medical Research Institute and Chancellor's Building.
Professor Charles french-Constant, Director of the Medical Research Council Centre for Regenerative Medicine at the SCRM and Chair of Medical Neurology at the University of Edinburgh, said: "Recent research into stem cells has heralded the beginning of a revolution in modern medicine. The Scottish Centre for Regenerative Medicine's great strength lies in bringing world-class clinicians and scientists to work together, encouraging the translation of laboratory discoveries into treatments for patients. The research will help in finding treatments for devastating conditions, for which there are currently no cures."
Jim McFarlane, Managing Director of Operations at Scottish Enterprise said: "Scotland has a distinguished history in developing breakthroughs in medical science and we believe that, collectively, the concentration of world-class research and facilities at Edinburgh BioQuarter will provide a breeding ground conducive to new medical discoveries that will continue that tradition for centuries to come and have a significant impact on the Scottish economy.
"Already, Nine has secured its first tenants and is attracting significant interest from potential occupiers from Scotland's life sciences sector.The official opening of the bio-incubator facility marks a major milestone in cementing Scotland's global reputation for excellence in commercialization of medical research."
Edinburgh BioQuarter is a joint venture between NHS Lothian, Scottish Enterprise, the University of Edinburgh and Alexandria Real Estate Equities, to boost developments in life sciences. This includes assisting the formation of spin-out companies from NHS and University of Edinburgh research, as well as encouraging partnerships with the bio-pharmaceutical industry.
See the original post here:
Scotland opens stem cell research center and bio-medical incubator
Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors
By raymumme
CLEARWATER, FL--(Marketwire -05/29/12)- Biostem U.S., Corporation, (HAIR.PK) (HAIR.PK) (Biostem, the Company), a fully reporting public company in the stem cell regenerative medicine sciences sector, today announced that Philip A. Lowry, MD, has been appointed as the Chairman of its Scientific and Medical Board of Advisors (SAMBA).
According to Biostem CEO, Dwight Brunoehler, "As Chairman, Dr. Lowry will work with a team drawn from a cross-section of medical specialties. His combination of research, academic and community practice experience make him the perfect individual to coordinate and lead the outstanding group of physicians that makes up our SAMBA. As a group, The SAMBA will guide the company to maintain the highest ethical standards in every effort, while seeking and developing new cutting edge technology based on stem cell use. I am privileged to work with Dr. Lowry, once again."
Dr. Lowry stated, "Dwight is an innovative businessman with an eye on cutting-edge stem cell technology. His history in the industry speaks for itself. I like the plan at Biostem and look forward to working with everyone involved."
Dr. Philip A. Lowry received his undergraduate degree from Harvard College before going on to the Yale University School of Medicine. His completed his internal medicine residency at the University of Virginia then pursued fellowship training in hematology and oncology there as well. During fellowship training and subsequently at the University of Massachusetts, he worked in the laboratory of Dr. Peter Quesenberry working on in vitro and in vivo studies of mouse and human stem cell biology.
Dr. Lowry twice served on the faculty at the University of Massachusetts Medical Center from 1992-1996 and from 2004-2009 as an assistant and then associate clinical professor of medicine establishing the bone marrow/stem cell transplantation program there, serving as medical director of the Cryopreservation Lab supporting the transplant program, helping to develop a cord blood banking program, and teaching and coordinating the second year medical school course in hematology and oncology. Dr. Lowry additionally has ten years experience in the community practice of hematology and oncology. In 2010, Dr. Lowry became chief of hematology/oncology for the Guthrie Health System, a three-hospital tertiary care system serving northern Pennsylvania and southern New York State. He is charged with developing a cutting-edge cancer program that can project into a traditionally rural health care delivery system.
Dr. Lowry has also maintained a career-long interest in regenerative medicine springing from his research and practice experience in stem cell biology. His new role positions him to foster further development of that field. As part of a horizontally and vertically integrated multi-specialty team, he is closely allied with colleagues in cardiology, neurology/neurosurgery, and orthopedics among others with whom he hopes to stimulate the expansion of regenerative techniques.
About Biostem U.S., Corporation
Biostem U.S., Corporation is a fully reporting Nevada corporation with offices in Clearwater, Florida. Biostem is a technology licensing company with proprietary technology centered on providing hair re-growth using human stem cells. The company also intends to train and license selected physicians to provide Regenerative Cellular Therapy treatments to assist the body's natural approach to healing tendons, ligaments, joints and muscle injuries by using the patient's own stem cells. Biostem U.S. is seeking to expand its operations worldwide through licensing of its proprietary technology and acquisition of existing stem cell-related facilities. The company's goal is to operate in the international biotech market, focusing on the rapidly growing regenerative medicine field, using ethically sourced adult stem cells to improve the quality and longevity of life for all mankind.
More information on Biostem U.S., Corporation can be obtained through http://www.biostemus.com, or by calling Fox Communications Group 310-974-6821.
Continue reading here:
Biostem U.S., Corporation Appoints Philip A. Lowry, MD as Chairman of Its Scientific and Medical Board of Advisors