Page 666«..1020..665666667668..680690..»

Stem cell collaboration could set stage for company’s growth

By Sykes24Tracey

A stem cell breakthrough at UCLA could mark a big step for a biopharmaceutical company to use its proprietary technology to forge partnerships with pharmaceutical companies and other research institutions.

Fibrocell Sciences technology isolates, purifies and multiplies a patients fibroblast cells, connective skin cells that make collagen. In a research collaboration with the company, UCLA used the technology to isolate, identify and increase the number of different skin cell types, which lead to two rare adult stem cell-like subpopulations being identified in adult human skin SSEA3-expressing regeneration-associated cells associated with skin regeneration after injuries and mesenchymal adult stem cells.

The findings could have broad applications for personalized medicine. Currently, adult stem cells are derived from adipose tissue and bone marrow. Using mesenchymal stem cells would be less invasive and could be more efficient. Mesenchymal stem cells are being used in research to develop osteoblasts, or bone cells; chondrocytes, or cartilage cells; and adipocytes, or fat cells.

David Pernock, the chairman and CEO of Fibrocell, said the move could mark a significant step in the companys growth.

Follow this link:
Stem cell collaboration could set stage for company’s growth

To Read More: Stem cell collaboration could set stage for company’s growth
categoriaSkin Stem Cells commentoComments Off on Stem cell collaboration could set stage for company’s growth | dataMay 10th, 2012
Read All

International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic …

By LizaAVILA

CARLSBAD, Calif.--(BUSINESS WIRE)--

International Stem Cell Corporation (OTCBB: ISCO.OB - News) http://www.internationalstemcell.com today announced that the Company has developed new technologies to commercialize the use of human parthenogenetic stem cells (hpSC) to treat human diseases. The methods announced today are capable of producing populations of stem cells and their therapeutically valuable derivatives not only to a higher level of purity but also at a cost that is approximately several times lower than previously reported techniques.

ISCOs research team has developed a new method to derive high-purity populations of neural stem cells (NSC) from hpSC and further differentiate them into dopaminergic neurons. This method is capable of generating sufficient quantities of neuronal cells for ISCOs pre-clinical and clinical studies and is highly efficient as it requires substantially less time and labor in addition to using fewer costly materials than traditional methods. ISCOs technologies make possible the creation of billions of neuronal cells necessary for conducting such studies from a small batch of stem cells.

ISCO has also announced today that it has developed a new high-throughput cell culture method for growing human parthenogenetic stem cells (hpSC) in large quantities. This new technique is easily scalable and can produce the quantities of cGMP grade hpSC necessary for commercial and therapeutic applications.

One of the most challenging issues in commercializing stem cell based treatments is creating high-purity populations of stem cell derivatives at a reasonable cost. I believe the new methods we have developed solve this important problem and help position us for future clinical studies, says Dr. Ruslan Semechkin, Vice President, R&D.

About International Stem Cell Corporation

International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology, and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.

To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.

Forward-looking Statements

Statements pertaining to anticipated developments, the potential benefits of research programs and new manufacturing technologies, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products and technologies regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.

Visit link:
International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic ...

To Read More: International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic …
categoriaSkin Stem Cells commentoComments Off on International Stem Cell Corporation Announces New Stem Cell Manufacturing Technologies to Support its Therapeutic … | dataMay 10th, 2012
Read All

NY medical schools chart progress with stem cells

By LizaAVILA

ALBANY, N.Y. Almost halfway through a $600 million state program supporting stem cell research, eight medical schools around New York are reporting progress on projects such as replicating liver cells and eradicating leukemia cells.

Only on msnbc.com

A new report from Associated Medical Schools of New York updates work at the institutions where hundreds of researchers are starting to unravel causes and potential treatments for conditions ranging from autism to heart disease and cancer. Stem cells are self-renewing and have the ability to develop into other types of cells.

The Mount Sinai School of Medicine reported finding a method to transform human skin cells into stem cells and turned differentiated human stem cells into heart cells. Those findings are expected to result in better understanding of how heart disease develops and allow initial testing of new treatments on stem cells before they are used on human subjects.

Dr. Ihor Lemischka, director of the Black Family Stem Cell Institute at Mount Sinai, said recreating heart cells in a dish from a patient with LEOPARD Syndrome, a disease caused by a genetic mutation, has opened ongoing avenues for researching the disease and screening potential drugs.

"It was a major achievement," Lemischka said. The initial work was reported in June 2010 in the journal Nature.

The shared research facility at Mount Sinai supports the work at 80 different labs, Lemischka said.

The Empire State Stem Cell Program was intended to fund projects in early stages, including those that initially have been unable to get federal or private funding. Grants have also been used for capital projects like renovating labs and establishing new stem cell centers.

The Albert Einstein College of Medicine reported replicating liver cells that could help reduce the need for liver transplants using live donors and cadavers.

Dr. Allen Spiegel said 12 new researchers have been hired with state funding at the Bronx school, which also lists anemia, brain disorders, heart disease and obesity among its stem cell research subjects.

Go here to see the original:
NY medical schools chart progress with stem cells

To Read More: NY medical schools chart progress with stem cells
categoriaSkin Stem Cells commentoComments Off on NY medical schools chart progress with stem cells | dataMay 10th, 2012
Read All

Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells

By JoanneRUSSELL25

By Carolyn Y. Johnson, Globe Staff

Two teams of Boston scientists have developed new ways to turn stem cells into different types of lung tissue, surmounting a major hurdle for scientists trying to harness the power of stem cell biology to study and develop treatments for major lung diseases.

One team then used skin cells from cystic fibrosis patients to create embryonic-like stem cells, then working in lab dishes used those cells to grow tissue that lines the airways and contains a defect responsible for the rare, fatal disease. The technique -- essentially a recipe for growing such lung tissue -- could provide a powerful platform to screen drugs and study the biology of the disease.

Growing lung tissue in the laboratory has long been a goal of stem cell scientists, but has been more technically difficult than growing other types of tissues, such as brain cells or heart cells. Such lung tissue is valuable because it could be used to screen potential drugs and more closely probe the problems that underlie diseases such as asthma, emphysema, and rare genetic diseases. Such techniques may also one day help researchers grow replacement tissues and devise ways to restore or repair injured lung tissue.

A team led by Massachusetts General Hospital researchers created lung tissue from a patient with the genetic mutation that most commonly underlies cystic fibrosis and researchers hope the technique will also be a powerful tool to study other diseases that affect the airway tissue, such as asthma and lung cancer. The other team, led by Boston University School of Medicine scientists, was able to derive cells that form the delicate air sacs of the lung from mouse embryonic stem cells. The team is hoping to refine the recipe for making the cells so that they can be used to derive lung tissue from a bank of 100 stem cell lines of patients with lung disease. Both papers were published Thursday in the journal Cell Stem Cell.

Vertex Pharmaceuticals, a Cambridge biotechnology company, earlier this year received approval for Kalydeco -- the first drug to directly target the underlying cause of cystic fibrosis. That compound was discovered by screening massive numbers of potential drugs against cells engineered to carry the same defect that underlies cystic fibrosis.

We had to use engineered cells, and certainly using more native human cells ... would be potentially beneficial, said Dr. Frederick Van Goor, head of biology for Vertexs cystic fibrosis research program. We had to rely on donor tissue obtained from patients with cystic fibrosis, and its a bit more challenging, because the number of donor lungs you can get and the number of cells you can derive from there are more limited.

Van Goor said it was too soon to say whether the company would use the new technology in screening, but noted that the tests the company had used to determine whether a drug was likely to work against the disease had, in some cases, given scientists false leads. Some molecules that worked on the engineered cells did not work in the complicated biology of the lung.

Its a significant event for the lung field, said Dr. Thiennu Vu, associate professor of medicine at the University of California San Francisco, who was not involved in the research. She added that much work remains before such cells could be used to repair or replace damaged tissue, and even before such cells would necessarily be useful for drug screening. It will be important, she said, to refine the recipe to ensure that the technique yields pure populations of the specific types of functional lung cells.

In the competitive world of science, where credit for being the first to do something is crucially important, the two research teams accomplishments are an unusual example of competitors turning into collaborators -- forging a relationship that both teams felt helped speed up progress.

See original here:
Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells

To Read More: Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells
categoriaSkin Stem Cells commentoComments Off on Boston scientists grow lung tissue from cystic fibrosis patients’ skin cells | dataMay 10th, 2012
Read All

Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63

By daniellenierenberg

Dr. Julio C. Voltarelli, who made a significant impact in cell transplantation, dies at 63

Distinguished Brazilian professor pioneered bone marrow transplantation

Newswise Tampa, Fla. (May. 9th , 2012) Julio C. Voltarelli, MD, PhD, professor at the Ribeiro Preto School of Medicine at the University of So Paulo, Brazil, died March 21, 2012 at the age of 63. Dr. Voltarelli, who was on the editorial board of the Cell Transplantation journal, published by Cognizant Communication Corporation, and an important factor in the journals success, was a distinguished stem cell researcher and head of the bone marrow transplantation unit at the Ribeiro Preto School of Medicine.

Dr. Voltarelli had a significant impact on Brazilian stem cell transplantation science, said Dr. Maria C. O. Rodrigues, Dr. Voltarellis longtime colleague. He was driven to bring the benefits of the newest cellular therapies to those with ALS, MS and type 1 diabetes. His efforts and dedication will be greatly missed.

Dr. Voltarelli, a graduate of the Ribeiro Preto School of Medicine, served post-doctoral fellowships at the University of California San Francisco, the Fred Hutchinson Cancer Research Center in Seattle, and the Scripps Research Institute in San Diego. He returned to Brazil in 1992 and started a highly ranked bone marrow transplantation program at the Ribeiro Preto School of Medicine. In 2002, Dr. Voltarelli initiated the schools research efforts in stem cell transplantation for autoimmune diseases, later focusing on diabetes, graft-versus-host disease and sickle cell anemia.

At the time of his death, Dr. Voltarelli, in addition to serving as head of the bone marrow transplantation unit, also served as research coordinator for the Center for Cellular Therapy at the So Paulo Research Foundation and the National Institute of Science and Technology in Stem Cells and Cell Therapy. He was recently elected president of the Brazilian Society of Bone Marrow Transplantation.

His publications included the first books on stem cell transplantation and clinical immunology written in Portuguese. He also founded the Brazilian Society of Stem Cell Transplantation.

His colleagues in Brazil called his lifelong contributions priceless and remembered him for his leadership skills, vision, and sense of humor.

# The Coeditor-in-chiefs for CELL TRANSPLANTATION are at the Center for Neuropsychiatry, China Medical University Hospital, TaiChung, Taiwan, and the Diabetes Research Institute, University of Miami Miller School of Medicine. Contact, Shinn-Zong Lin, MD, PhD at shinnzong@yahoo.com.tw or Camillo Ricordi, MD at ricordi@miami.edu or David Eve, PhD at celltransplantation@gmail.com #

News release by Florida Science Communications http://www.sciencescribe.net

See the article here:
Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63

To Read More: Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63
categoriaUncategorized commentoComments Off on Julio C. Voltarelli, Pioneer in Cell Transplantation, Dies at 63 | dataMay 10th, 2012
Read All

Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?

By daniellenierenberg

ScienceDaily (May 10, 2012) This summer's action film, "The Amazing Spider-Man," is another match-up between the superhero and his nemesis the Lizard. Moviegoers and comic book fans alike will recall that the villain, AKA Dr. Curt Connors, was a surgeon who, after losing an arm, experimented with cell generation and reptilian DNA and was eventually able to grow back his missing limb.

The latest issue of the journal Physiology contains a review article that looks at possible routes that unlock cellular regeneration in general, and the principles by which hair and feathers regenerate themselves in particular.

The authors apply what is currently known about regenerative biology to the emerging field of regenerative medicine, which is being transformed from fantasy to reality.

Review Article

While the concept of regenerative medicine is relatively new, animals are well known to remake their hair and feathers regularly by normal regenerative physiological processes. In their review, the authors focus on (1) how extrafollicular environments can regulate hair and feather stem cell activities and (2) how different configurations of stem cells can shape organ forms in different body regions to fulfill changing physiological needs.

The review outlines previous research on the role of normal regeneration of hair and feathers throughout the lifespan of various birds and mammals. The researchers include what is currently known about the mechanism behind this re-growth, as well as what gaps still exist in the knowledge base and remain ripe for future research.

The review examines dozens of papers on normal "physiological regeneration" -- the re-growth that happens over the course of an animal's life and not in response to an injury. This regeneration takes place to accommodate different stages in an animal's life (e.g., replacing downy chick feathers with an adult chicken's, or replacing the fine facial hair of a young boy with the budding beard of an adolescent), or in response to various environmental conditions (e.g., cats shedding a thick winter coat in the summer heat but re-growing it when the seasons change again, or snowshoe hares switching from brown in the summer to white in the winter for camouflage).

These changes seem to respond both to internal cues such as physiology of the hair follicle itself, or external cues such as the environment, but the mechanisms behind these normal alterations are largely unknown. Stem cells inside the follicle prompt hair and feather regeneration, but researchers are still unsure how to guide those cells to form the shape, size, and orientation of these "skin appendages" so that controlled re-growth is possible. Additionally, scientists are still unsure how to re-grow hair on skin in people after severe injuries that lead to scar tissue.

Importance of the Findings

The reviewed studies suggest that while researchers are making headway in understanding how and why hair and feathers regenerate after normal loss or in response to different life stages, much still remains unknown. This missing knowledge could hold valuable clues to learning how to regenerate much more complicated and valuable structures after loss to injury, such as fingers and toes.

Read more from the original source:
Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?

To Read More: Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes?
categoriaUncategorized commentoComments Off on Regenerative medicine: Could the ways animals regenerate hair and feathers help restore human fingers and toes? | dataMay 10th, 2012
Read All

Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

By Sykes24Tracey

Connie K. Ho for RedOrbit.com

A new study by researchers at the University of California, Los Angeles (UCLA) has discovered two adult stem cell-like subpopulations in adult human skin.

The findings allow for further research to be done in the area of personalized medicine and patient-specific cellular therapies.

The study, using technology from Fibrocell Science, allowed the researchers to identify and confirm two types of cells in human skin cell cultures; the possible source of stem cell-like subpopulations from skin biopsies would be faster to perform, painless, and less invasive than current extractions from adipose tissues and bone marrow.

The research, featured in the inaugural issue of BioResearch Open Access, discusses two subtypes of cells. BioResearch Open Access is a bimonthly, peer-reviewed journal. It features scientific topics like biochemistry, bioengineering, gene therapy, genetics, microbiology, neuroscience, regenerative medicine, stem cells, systems biology, tissue engineering and biomaterials, and virology.

Being able to identify two sub-populations of rare, viable and functional cells that behave like stem cells from within the skin is an important finding because both cell types have the potential to be investigated for diverse clinical applications, commented Dr. James A. Bryne, lead author of the report.

Brynes research, first at Stanford University then at UCLA, focused on reprogramming beginnings of cells from animals and then humans. A graduate of Cambridge University, Bryne studied the intra- and inter-species of epigenetic reprogramming. His work also highlighted how primate embryonic stem cells could be derived from somatic cell nuclear transfers.

The study published in BioResearch Open Access confirmed previous research that identified a rare population of cells in adult human skin that had a marker called stage-specific embryonic antigen 3 (SSEA3). Bryne and his colleagues found that there was an increase in the amount of SSEA3 expressing cells after injury to the human skin. It showed that the SSEA3 biomarker could be used to help identify and isolate cells with tissue-regenerative traits.

Finding these rare adult stem cell-like subpopulations in human skin is an exciting discovery and provides the first step towards purifying and expanding these cells to clinically relevant numbers for application to a variety of potential personalized cellular therapies for osteoarthritis, bone loss, injury and/or damage to human skin as well as many other diseases, remarked Bryne, an Assistant Professor of Molecular and Medical Pharmacology at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research at UCLA.

Bryne and his team used Fibrocell technology to collect cells from skin samples, cultured the cells in the lab, and purified them by fluorescence-activated cell sorting (FACS). The FACS tagged suspended cells with fluorescent markers for undifferentiated stem cells. The researchers were able to separate the rare cell subpopulations from other kinds of cells.

Originally posted here:
Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies

To Read More: Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies
categoriaUncategorized commentoComments Off on Study Identifies Cell Subtypes For Potential Personalized Cellular Therapies | dataMay 10th, 2012
Read All

New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly …

By LizaAVILA

BOUDRY, Switzerland--(BUSINESS WIRE)--

Celgene International Srl, a subsidiary of Celgene Corporation (NASDAQ: CELG - News), today announced that results from three phase III studies evaluating the use of continuous REVLIMID (lenalidomide) treatment in newly diagnosed multiple myeloma (MM) patients or maintenance treatment with lenalidomide following autologous stem cell transplant were published online in the May 10, 2012 edition of the New England Journal of Medicine. All three publications highlight the expanding body of clinical evidence supporting lenalidomide treatment in these areas.

Continuous Lenalidomide Therapy (non-transplant eligible population):

The first article highlights a Celgene-sponsored study of continuous lenalidomide treatment in elderly patients newly diagnosed with multiple myeloma.

Continuous Lenalidomide Treatment for Newly Diagnosed Multiple Myeloma (MM-015)

This double-blind, phase III, multicenter, randomized study conducted by Celgene compared melphalanprednisonelenalidomide induction followed by lenalidomide maintenance (MPR-R), with melphalanprednisonelenalidomide (MPR), or melphalanprednisone (MP) followed by placebo in 459 patients aged 65 years with newly-diagnosed myeloma who were not eligible for autologous stem-cell transplant.

http://www.nejm.org/doi/full/10.1056/NEJMoa1112704

Post-transplant maintenance

The two additional articles published in the edition highlighted cooperative group studies that evaluated the use of lenalidomide maintenance following autologous stem cell transplant (ASCT).

In each of the studies, one funded by the National Cancer Institute and conducted by the Cancer and Leukemia Group B (CALGB) and one by the Intergroupe Francophone du Myelome (IFM), maintenance treatment with lenalidomide following ASCT resulted in delayed time to disease progression or death compared to placebo.

See the original post:
New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly ...

To Read More: New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly …
categoriaUncategorized commentoComments Off on New England Journal of Medicine Reports on Three Phase III REVLIMID® (lenalidomide) Trials in Patients with Newly … | dataMay 10th, 2012
Read All

Pluristem stem cell therapy saves a patient, shares jump

By Dr. Matthew Watson

Wed May 9, 2012 3:35pm BST

(Reuters) - Pluristem Therapeutics Inc said a 7-year old girl suffering from a bone marrow disease experienced a reversal of her condition after receiving its experimental stem cell therapy, sending the Israeli company's shares up 32 percent.

The girl, suffering from aplastic bone marrow in which the patient has no blood-forming stem cells, had a significant rise in her red cells, white cells and platelets following an injection of Pluristem's therapy -- PLacental eXpanded cells.

"The results of this unique case indicate that PLX cells may be effective in treating other diseases that affect the bone marrow," Reuven Or, the child's physician at Hadassah Medical Center, was quoted in a statement by Pluristem.

Last September, the company said animal studies showed that the therapy had the potential to treat blood tissue complications related with acute radiation syndrome, commonly called radiation sickness.

Last month, the U.S. health regulators gave a go ahead to the company to start a mid-stage trial of the therapy for treating Intermittent Claudication -- a subset of peripheral artery disease.

Pluristem shares, which have gained 5 percent since receiving the FDA nod for the mid-stage trial, were up 15 percent at $2.70 in morning trade on the Nasdaq. They touched a high of $3.10 earlier.

(Reporting by Esha Dey in Bangalore; Editing by Gopakumar Warrier)

Read the original post:
Pluristem stem cell therapy saves a patient, shares jump

To Read More: Pluristem stem cell therapy saves a patient, shares jump
categoriaUncategorized commentoComments Off on Pluristem stem cell therapy saves a patient, shares jump | dataMay 10th, 2012
Read All

Iranian researcher helps treating muscular dystrophy using stem cells

By daniellenierenberg

Source: ISNA, Tehran

Iranian researcher and lecturer Radbod Darabi jointly with his collogues from the University of Minnesota's Lillehei Heart Institute have effectively treated muscular dystrophy in mice using human stem cells derived from a new process which for the first time makes the production of human muscle cells from stem cells efficient and effective.

Radbod Darabi, MD, PhD with Rita Perlingeiro, PhD. (Credit: Image courtesy of University of Minnesota Academic Health Center)

The research outlines the strategy for the development of a rapidly dividing population of muscle-forming cells derived from induced pluripotent (iPS) cells.

IPS cells have all of the potential of embryonic stem (ES) cells, but are derived by reprogramming skin cells. They can be patient-specific, which renders them unlikely to be rejected, and do not involve the destruction of embryos.

This is the first time that human stem cells have been shown to be effective in the treatment of muscular dystrophy.

According to the researchers, there has been a significant lag in translating studies using mouse stem cells into therapeutically relevant studies involving human stem cells.

This lag has dramatically limited the development of cell therapies or clinical trials for human patients.

The latest research from the University of Minnesota provides the proof-of-principle for treating muscular dystrophy with human iPS cells, setting the stage for future human clinical trials.

As the researchers noted one of the biggest barriers to the development of cell-based therapies for neuromuscular disorders like muscular dystrophy has been obtaining sufficient muscle progenitor cells to produce a therapeutically effective response.

Read the rest here:
Iranian researcher helps treating muscular dystrophy using stem cells

To Read More: Iranian researcher helps treating muscular dystrophy using stem cells
categoriaSkin Stem Cells commentoComments Off on Iranian researcher helps treating muscular dystrophy using stem cells | dataMay 7th, 2012
Read All

Single cell triggers fibroid uterine tumor

By Sykes24Tracey

CHICAGO, May 5 (UPI) -- U.S. researchers say they've identified the molecular trigger of fibroid uterine tumors -- a single stem cell develops a mutation and grows uncontrollably.

Dr. Serdar Bulun, the chairman of obstetrics and gynecology at Northwestern University Feinberg School of Medicine and Northwestern Memorial Hospital, said the single cell activates other cells to join its frenzied expansion.

"It loses its way and goes wild," Bulun said in a statement. "No one knew how these came about before. The stem cells make up only 1.5 percent of the cells in the tumor, yet they are the essential drivers of its growth."

Dr. Masanori Ono, a post-doctoral student in Bulun's laboratory who was the study's lead author, said the stem cell that initiated the tumor carries a mutation called MED12.

Recently, mutations in the MED12 gene have been reported in the majority of uterine fibroid tissues. Once the mutation kicks off the abnormal expansion, the tumors grow in response to steroid hormones, particularly progesterone, Bulun said.

"Understanding how this mutation directs the tumor growth gives us a new direction to develop therapies," Bulun said in a statement.

The paper is published in the journal PLoS ONE.

See the rest here:
Single cell triggers fibroid uterine tumor

To Read More: Single cell triggers fibroid uterine tumor
categoriaUncategorized commentoComments Off on Single cell triggers fibroid uterine tumor | dataMay 7th, 2012
Read All

Complex cancer industry trial literature is too confusing for patients to understand

By Dr. Matthew Watson

By J. D. Heyes

Have you ever read something so complex and confusing that it frustrated you to
the point of distraction? Well, a new study has found that cancer trial
literature causes that kind of frustration - and may be misleading to patients
as well.

According to Prof. Mary Dixon-Woods, professor of Medical Sociology at the
University of Leicester Department of Health Sciences in Great Britain, a
number of cancer patients found information leaflets describing cancer trials
too long, too incomprehensible and too intimidating.

"These information sheets are poorly aligned with patients' information
needs and how they really make decisions about whether to join a cancer
trial," said Dixon-Woods, lead author of the research http://www.eurekalert.org/pub_releases/2012-03/uol-cti032612.php,
which was published in the international journal Sociology of Health and
Illness.

"Some patients did find them very useful, but many others paid them little
attention. They preferred to rely on discussions they had with their doctor to
make up their minds," she said. Read more…

Source:
http://feeds.feedburner.com/integratedmedicine

To Read More: Complex cancer industry trial literature is too confusing for patients to understand
categoriaIntegrative Medicine commentoComments Off on Complex cancer industry trial literature is too confusing for patients to understand | dataMay 6th, 2012
Read All

Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal … – MarketWatch (press release)

By Dr. Matthew Watson


The Star-Ledger - NJ.com
Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal ...
MarketWatch (press release)
GUANGZHOU, China, May 3, 2012 /PRNewswire via COMTEX/ -- Johnson & Johnson (China) Investment Ltd. today announced it has acquired Guangzhou Bioseal Biotechnology Co., Ltd. (Bioseal) a privately held biopharmaceutical company specializing in the design ...
Johnson & Johnson buys Chinese sealant makerBioscience Technology

all 4 news articles »

Source:
http://news.google.com/news?q=biotechnology&output=rss

To Read More: Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal … – MarketWatch (press release)
categoriaUncategorized commentoComments Off on Johnson & Johnson (China) Investment Ltd. Acquires Guangzhou Bioseal … – MarketWatch (press release) | dataMay 6th, 2012
Read All

UAB Professor Louise Chow elected to National Academy of Science – UAB News

By Dr. Matthew Watson


UAB News
UAB Professor Louise Chow elected to National Academy of Science
UAB News
By Beena Thannickal Louise Chow, Ph.D., professor in the Department of Biochemistry and Molecular Genetics at the University of Alabama at Birmingham and senior scientist at the UAB Comprehensive Cancer Center, was elected a member of the National ...
UAB researcher elected to prestigious National Academy of Sciencesal.com (blog)
Six Stanford faculty elected to National Academy of SciencesStanford University News

all 11 news articles »

Source:
http://news.google.com/news?q=molecular-genetics&output=rss

To Read More: UAB Professor Louise Chow elected to National Academy of Science – UAB News
categoriaUncategorized commentoComments Off on UAB Professor Louise Chow elected to National Academy of Science – UAB News | dataMay 6th, 2012
Read All

Another > $100M month for companies in the cell therapy space

By Dr. Matthew Watson

Tweet 


Last month we reported here on this blog that March was more than a $100M month for companies in the stem cell and cell-based regenerative medicine space in terms of monies raised.  

What we missed was a $15M grant from Cancer Prevention and Research Institute of Texas (CPRIT) for UK-based CellMedica.  This pumps last month's total to just under $140M.

This month, according to our sources, betters even March's better numbers by coming in at just over $170M though that is largely on the back of one large deal in Asia.  Here's how the numbers break down.

Allocure kicked off the month with a decent $25M Series B round from new syndicate member Lundbeckfond Ventures, as well as previous investors SV Life Sciences and Novo A/S.  Allocure is headed into phase 2 for acute kidney injury with an allogeneic mesenchymal stem cell therapeutic they currently call AC607.  


Little-known Canadian-based, Sernova then announced a $3.6M PIPE to fund continued development of its proprietary Cell Pouch System(TM), and, in particular, to fund the upcoming first-in-man clinical trial for patients with diabetes receiving an islet transplant.  The application to proceed with this trial is currently under review by Health Canada.


Next up was NeoStem closing a $6.8M public offering for "expanding" their contract manufacturing business, Progenitor Cell Therapy, and "enrolling the PreSERVE AMR-001 Phase 2 clinical trial for preserving heart function after a heart attack".  


The biggest deal of the month was a $65M convertible debt financing of China Cord Blood by none other than global powerhouse Kohlberg Kravis Roberts (KKR) through it KKR China Growth Fund L.P., a China-focused investment fund managed by KKR.  We believe this is deal is certainly an investment in the future of China's healthcare market potential but that it is bigger than that.  We believe a significant driver for this deal may likely have been the opportunity to consolidate this sector globally - to use a significant operation and 'war chest' to fund mergers and acquisitions on both the public and private cord blood banking sector worldwide.


The only classic first-round venture raise this month was a milestone-based $5M Series A by Bay City Capital into Phil Coelho's new company, SynGen, to fund his latest iteration of stem cell processing devices.


Forbion Capital then announced that it was leading a series D round, joined by fellow existing investors TVM Capital, Lumira Capital, Intersouth Partners, Caisse de depot et placement du Quebec, Morningside Group, and Aurora Funds, of $25M into Argos Therapeutics in order to kick them into their phase 3.  The hope here is that with some early phase 3 data they may be able to attract the elusive partner they couldn't land with a mere bucket of phase 2 data.


Innovacell landed the only European deal by announcing an 8.3M Euro (~$11M) investment by Buschier, Fides, HYBAG, and Uni Venture.  This will be used for the continued clinical development of its cell-therapy (ICES13) for the treatment of stress-urinary incontinence currently in a ph 3 study in several European countries.


ReNeuron announced a private placement also open to existing shareholders that brought in just under $10M (£6.1M) to support their phase 1 trial in stroke and other pre-clinical, clinical, and regulatory milestones. 


Finally, the Bio-Matrix Scientific Group, in an apparent ongoing quest to continuously reinvent itself, announced at month's end that they had formed a new subsidiary named Regen BioPharma and that they had raised $20M in a financing commitment from Southridge Partners II to purchase its common stock as required over the term of the agreement at a price set by an agreed formula.  This money is said to be dedicated to the acquisition of discovery-stage intellectual property and driving it through to phase 2 trials in an exercise of maximum value creation over a period they claim to be as short as 18-24 months.


..


So in the end, the month saw companies in the space raise just over $170M and even if you back out the stem cell banking deal its still over $100M for cell therapy companies.  


Over the 2 months, then, we've seen just over $311M raised through a variety of means by companies at every stage of maturity and for intended purposes ranging from acquisition, consolidation, early stage clinical development, and phase 3 testing.


--Lee


p.s. If you are aware of other deals in the sector this month, let us know and we'll update this accordingly.


Source:
http://feeds.feedburner.com/CellTherapyBlog

To Read More: Another > $100M month for companies in the cell therapy space
categoriaRegenerative Medicine commentoComments Off on Another > $100M month for companies in the cell therapy space | dataMay 6th, 2012
Read All

Gene Hunt Is On for Mental Disabilities in Children

By Dr. Matthew Watson

By Ewen Callaway of Nature magazine

[More]

Add to digg
Add to StumbleUpon
Add to Reddit
Add to Facebook
Add to del.icio.us
Email this Article


Source:
http://rss.sciam.com/sciam/topic/gene-therapy

To Read More: Gene Hunt Is On for Mental Disabilities in Children
categoriaUncategorized commentoComments Off on Gene Hunt Is On for Mental Disabilities in Children | dataMay 6th, 2012
Read All

April 2012 Advances: Additional Resources

By Dr. Matthew Watson

The Advances news section in April's issue of Scientific American included stories on digital textbooks, the promise of using gene therapy to fight blindness and how fragile orchids survive. To learn more about any of the stories, follow these links.

[More]

Add to digg
Add to StumbleUpon
Add to Reddit
Add to Facebook
Add to del.icio.us
Email this Article


Source:
http://rss.sciam.com/sciam/topic/gene-therapy

To Read More: April 2012 Advances: Additional Resources
categoriaUncategorized commentoComments Off on April 2012 Advances: Additional Resources | dataMay 6th, 2012
Read All

Processed EHR text can be used to develop CDS tools Read more: Processed EHR text can be used to develop Clinical decision support tools with automated text processing

By Dr. Matthew Watson

See on Scoop.itinPharmatics

Free text in electronic health records, with the help of natural language processing (NLP) technology, can be used to create accurate clinical decision support (CDS) tools, according to a study published this week in the Journal of the American Medical Informatics Association

See on jamia.bmj.com

Source:
http://microarray.wordpress.com/feed/

To Read More: Processed EHR text can be used to develop CDS tools Read more: Processed EHR text can be used to develop Clinical decision support tools with automated text processing
categoriaUncategorized commentoComments Off on Processed EHR text can be used to develop CDS tools Read more: Processed EHR text can be used to develop Clinical decision support tools with automated text processing | dataMay 6th, 2012
Read All

Why mHealth hasn’t created an Instagram (yet)

By Dr. Matthew Watson

See on Scoop.itinPharmatics

Read about why a Qualcomm Life executive says mobile health doesn’t yet have an Instagram, and why it eventually will.

See on http://www.medcitynews.com

Source:
http://microarray.wordpress.com/feed/

To Read More: Why mHealth hasn’t created an Instagram (yet)
categoriaUncategorized commentoComments Off on Why mHealth hasn’t created an Instagram (yet) | dataMay 6th, 2012
Read All

Kudos to CIRM: Stem Cell Agency Sticks with Full Financial Disclosure

By Dr. Matthew Watson


A key panel of directors of the $3
billion California stem cell agency yesterday voted unanimously to
retain full public disclosure of the financial interests of its
directors and top executives.
The director's Governance Subcommittee
bypassed a proposal that would have substantially weakened disclosure at a time when the agency is moving closer to industry in an effort
to develop cures.
"Because of CIRM's unique mission
and the agency's longstanding commitment to transparency," said
Kevin McCormack, the agency's spokesman, "they believed that
CIRM should continue to set an example by requiring the broadest
disclosure of members of the board and high level staff."
Currently CIRM board members and top
executives must disclose all their investments and income – in a
general way – along with California real property that they hold.
Under the rejected changes, disclosures would have instead been
required only "if the business entity or source of income is of
the type to receive grants or other monies from or through
the California Institute for Regenerative Medicine." 
The proposed changes would also have
relieved CIRM officials of reporting investment in or income from
venture capital or other firms that may be engaged in financing
biotech or stem cell enterprises, since the firms do not receive cash
from CIRM or engage in biomedical research.

The subcommittee's action will go before the full CIRM board later this month, where it is expected to be ratified. 

Our take? The Governance Subcommittee
took the right action and is to be commended for going beyond the
letter of the law. The integrity and credibility of CIRM are
paramount. As the California Stem Cell Report wrote last week, narrowing disclosure would only have engendered suspicion and
unnecessarily raised questions about the conduct of the agency as it
embarks on an aggressive push for stem cell cures.

Source:
http://californiastemcellreport.blogspot.com/feeds/posts/default?alt=rss

To Read More: Kudos to CIRM: Stem Cell Agency Sticks with Full Financial Disclosure
categoriaStem Cell Therapy commentoComments Off on Kudos to CIRM: Stem Cell Agency Sticks with Full Financial Disclosure | dataMay 6th, 2012
Read All

Page 666«..1020..665666667668..680690..»


Copyright :: 2025