Vein grown from girl's stem cells
By JoanneRUSSELL25
Highly-magnified red blood cells course through a vein. Picture: file Source: Supplied
DOCTORS in Sweden successfully replaced a potentially-fatal blocked vein in a 10-year-old girl with one grown from her own stem cells, according to a study published today.
The team - from the University of Gothenburg andSahlgrenska University Hospital - accomplished the feat by populating a section of vein from a dead donor using stem cells gleaned from the girl's bone barrow.
"The new stem-cells-derived graft resulted not only in good blood flow rates and normal laboratory test values but also, in strikingly improved quality of life for the patient," the study's authors wrote in The Lancet.
The successful feat also "opens interesting new areas of research," they added.
The operation marked the latest step in scientists' ability to create replacement organs for transplant.
In 2010, doctors at London's Great Ormond Street Hospital made history by successfully transplanting a donor windpipe into a young boy, also aged 10, that was regenerated inside his body using his own stem cells.
In the latest instance, a 3.5-inch (9cm) section of groin vein from the donor was stripped of any living cells and "recellularised" with new cells grown from stem cells taken from the girl's bone marrow.
Techniques that use stem cells from a patient's own body carry the major benefit that they do not provoke an immune response. In the Swedish case, one alternative treatment option was a liver transplant, which would have required a lifetime of immunosuppressants. The work was funded by the Swedish government.
Visit link:
Vein grown from girl's stem cells
Vein grown from girl's own stem cells transplanted
By Sykes24Tracey
For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 9-centimetre section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girl's condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
Original post:
Vein grown from girl's own stem cells transplanted
Six new stem cell lines now publicly available
By LizaAVILA
ScienceDaily (June 14, 2012) Six new human embryonic stem cell lines derived at the University of Michigan have just been placed on the U.S. National Institutes of Health's registry, making the cells available for federally-funded research.
U-M now has a total of eight cell lines on the registry, including five that carry genetic mutations for serious diseases such as the severe bleeding disorder hemophilia B, the fatal brain disorder Huntington's disease and the heart condition called hypertrophic cardiomyopathy, which causes sudden death in athletes and others.
Researchers at U-M and around the country can now begin using the stem cell lines to study the origins of these diseases and potential treatments. Two of the cell lines are believed to be the first in the world bearing that particular disease gene.
The three U-M stem cell lines now in the registry that do not carry disease genes are also useful for general studies and as comparisons for stem cells with disease genes. In all, there are 163 stem cell lines in the federal registry, most of them without major disease genes.
Each of the lines was derived from a cluster of about 30 cells removed from a donated five-day-old embryo roughly the size of the period at the end of this sentence. The embryos carrying disease genes were created for reproductive purposes, tested and found to be affected with a genetic disorder, deemed not suitable for implantation and would have otherwise been discarded if not donated by the couples who donated them.
Some came from couples having fertility treatment at U-M's Center for Reproductive Medicine, others from as far away as Portland, OR. Some were never frozen, which may mean that the stem cells will have unique characteristics and utilities.
The full list of U-M-derived stem cell lines accepted to the NIH registry includes:
"Our last three years of work have really begun to pay off, paving the way for scientists worldwide to make novel discoveries that will benefit human health in the near future," says Gary Smith, Ph.D., who derived the lines and also is co-director of the U-M Consortium for Stem Cell Therapies, part of the A. Alfred Taubman Medical Research Institute.
"Each cell line accepted to the registry demonstrates our attention to details of proper oversight, consenting, and following of NIH guidelines," says Sue O'Shea, Ph.D., professor of Cell and Developmental Biology at the U-M Medical School, and co-director of the Consortium for Stem Cell Therapies.
U-M is one of only three academic institutions to have disease-specific stem cell lines listed in the national registry, says Smith, who is a professor in the Department of Obstetrics and Gynecology at the University of Michigan Medical School. The first line, a genetically normal one, was accepted to the registry in February.
Here is the original post:
Six new stem cell lines now publicly available
ViaCyte Appoints Dr. Paul Laikind Chief Executive Officer
By raymumme
SAN DIEGO, June 15, 2012 /PRNewswire/ --ViaCyte, Inc. today announced the appointment of seasoned entrepreneur, Paul Laikind, Ph.D., as President & Chief Executive Officer. Allan Robins, Ph.D., who was serving as Acting CEO, will continue in his role as Vice President & Chief Technology Officer. ViaCyte is a leading pre-clinical company developing a novel cell therapy product for the treatment of insulin dependent diabetes.
Dr. Laikind brings over 25 years of leadership experience in the biotechnology and life sciences industry to ViaCyte. He is a serial entrepreneur, who co-founded three San Diego companies, Gensia Pharmaceuticals Inc., Viagene Inc., and Metabasis Therapeutics Inc., serving in various executive positions including President and CEO. All three companies went public and were eventually acquired. Most recently, he served as Chief Business Officer and Senior Vice President of Business Development at the Sanford-Burnham Medical Research Institute.
"Paul brings to ViaCyte a wealth of experience in managing new businesses based on highly innovative life sciences technologies," said Fred Middleton, Chairman of ViaCyte. "We are pleased to have him join to lead ViaCyte through our next phase of development in bringing our transformative stem cell therapy to patients with diabetes. We believe Paul's leadership and business development skills will greatly assist us in our strategy to be a leader in regenerative medicine therapy and to capitalize on our current technology leadership position in the development of stem cell therapy."
As Sanford-Burnham's first Chief Business Officer, Dr. Laikind set a new direction for the Institute's business development activity through a combination of licensing and strategic partnerships with large pharmaceutical organizations, including collaborations with Pfizer's Centers for Therapeutic Innovation, Ortho-McNeil-Janssen Pharmaceuticals, Inc., a division of Johnson & Johnson, and Takeda Pharmaceutical. Working with the Institute's leadership team he helped establish a sophisticated infrastructure for advanced drug discovery and development at Sanford-Burnham.
Prior to Sanford-Burnham, Dr. Laikind served as President & CEO from 1999-2008 for Metabasis Therapeutics, which developed new therapies for metabolic and liver diseases. Dr. Laikind co-founded Gensia Pharmaceuticals in 1986, was a board member of the company and held various executive leadership positions. While at Gensia he was responsible for establishing a number of important strategic partnerships. In 1997, he was part of a team that restructured Gensia to focus on specialty pharmaceuticals. The restructured company was renamed Gensia Sicor and went on to be acquired for over $3 billion by Teva Pharmaceutical Industries in 2004. Soon after founding Gensia, he was co-founder of Viagene, a gene therapy company. Viagene completed an initial public offering in 1993 and was acquired in 1995 by Chiron Inc., now a subsidiary of Novartis Vaccines & Diagnostics.
Dr. Laikind earned his Ph.D. in biochemistry from the University of California, San Diego and is the inventor on a number of key patents.
"ViaCyte addresses one of the largest commercial and medical opportunities in stem-cell-derived therapeutics, and its team is internationally recognized for its scientific leadership," said Dr. Laikind. "I look forward to working with ViaCyte through clinical development and market launch of its first important product that promises to change the way we treat insulin dependent diabetes."
About ViaCyte
ViaCyte is a preclinical cell therapy company focused on diabetes. The Company's technology is based on pancreatic beta cell progenitors derived from human pluripotent stem cells. These cells are implanted using a durable and retrievable encapsulation device. Once implanted and matured, these cells secrete insulin in response to blood glucose levels. ViaCyte's goal is long term insulin independence without immune suppression, and without hypoglycemia and other diabetes-related complications.
ViaCyte is a private company headquartered in San Diego, California with additional operations in Athens, Georgia. The Company is funded in part by the California Institute for Regenerative Medicine.
Read the rest here:
ViaCyte Appoints Dr. Paul Laikind Chief Executive Officer
Twelve Yale faculty receive grants for work with embryonic stem cells
By NEVAGiles23
Twelve stem cell researchers from Yale received $6.75 million from the Connecticut Stem Cell Fund, according to figures supplied by the states Department of Health.
The amount was the largest ever awarded to Yale since the state legislature in 2005 designated $100 million over 10 years to promote stem cell research in Connecticut. Connecticut was the third state to pass legislation authorizing use of funds to study human embryonic stem cells.
Stem cell researchers at Yale very much appreciate Connecticuts vision and determination in supporting this research despite the challenging economy, said Haifan Lin, director of the Yale Stem Cell Center. In return, our work along with research conducted at the University of Connecticut and Wesleyan has made our state a leader in stem cell research and already positively impacted the state economy.
Yale scientists who received major grants and their research goals are:
Eugene Redmond $1.8 million for treatment of Parkinsons disease using neurons derived from stem cells.
Valerie Horsley $750,0000 for generation of skin cells.
Jeffrey Kocsis $750,000 for use of embryonic cells to remyelinate spinal cord tissue.
Yibing Qyang $750,000 for generation of tissue-engineered blood vessels.
Natalia Ivanova $750,000 for the study of how embryonic stem cells control cell fate.
In-Hyun Park $750,000 for regeneration of neurons.
Excerpt from:
Twelve Yale faculty receive grants for work with embryonic stem cells
Vein grown from 10-year-old girl's stem cells
By raymumme
Highly-magnified red blood cells course through a vein. Picture: file Source: Supplied
DOCTORS in Sweden successfully replaced a potentially-fatal blocked vein in a 10-year-old girl with one grown from her own stem cells, according to a study published today.
The team - from the University of Gothenburg andSahlgrenska University Hospital - accomplished the feat by populating a section of vein from a dead donor using stem cells gleaned from the girl's bone barrow.
"The new stem-cells-derived graft resulted not only in good blood flow rates and normal laboratory test values but also, in strikingly improved quality of life for the patient," the study's authors wrote in The Lancet.
The successful feat also "opens interesting new areas of research," they added.
The operation marked the latest step in scientists' ability to create replacement organs for transplant.
In 2010, doctors at London's Great Ormond Street Hospital made history by successfully transplanting a donor windpipe into a young boy, also aged 10, that was regenerated inside his body using his own stem cells.
In the latest instance, a 3.5-inch (9cm) section of groin vein from the donor was stripped of any living cells and "recellularised" with new cells grown from stem cells taken from the girl's bone marrow.
Techniques that use stem cells from a patient's own body carry the major benefit that they do not provoke an immune response. In the Swedish case, one alternative treatment option was a liver transplant, which would have required a lifetime of immunosuppressants. The work was funded by the Swedish government.
Original post:
Vein grown from 10-year-old girl's stem cells
Girl gets vein grown from her own stem cells for transplant
By daniellenierenberg
LONDON: Scientists have successfully transplanted a vein made from a 10-year-old girl's own stem cells into her body. It is the first time such an operation has been reported and marks an important step in the practical ability of doctors to use stem cells to grow replacement cells for damaged or diseased tissue.
Writing in the medical journal The Lancet, a team led by Professor Suchitra Sumitran-Holdgersson, of the University of Gothenburg in Sweden, described how the girl had a blocked hepatic portal vein, which takes blood away from the gut and spleen to the liver.
The blockage can lead to complications including internal bleeding, developmental problems and even death. The usual treatment for the condition is to remove the blocked vein and replace it with sections of healthy vein from other parts of the body.
Advertisement: Story continues below
The team instead grew a vein for the young girl using her own bone marrow stem cells.
They started with a nine-centimetre section of vein taken from the groin of a donor and stripped it of its cells, leaving behind a tubular protein scaffold. This was seeded with the girl's stem cells and the resulting vein was transplanted into the girl.
The procedure restored blood flow out of her liver immediately.
''The patient increased in height from 137 to 143 centimetres and increased in weight from 30 to 35 kilograms in the one year since the first operation,'' the authors wrote. ''Although we undertook no neurocognitive tests, the parents reported that the patient had enhanced physical activity (increased long distance walks of two to three kilometres and light gymnastics) and improved articulated speech and concentration power in school activities.''
Nine months after the operation, the vein had constricted slightly in size and this was corrected in a follow-up procedure. Most significantly, scientists found no antibodies for the donor vein in the girl's blood. Her body was not rejecting the transplant because it was recognised as being made of her own cells.
''The young girl in this report was spared the trauma of having veins harvested from the deep neck or leg with the associated risk of lower limb disorders, and avoided the need for a liver or multivisceral transplantation,'' Professors Martin Birchall and George Hamilton of University College London wrote in an accompanying commentary article in The Lancet.
Read this article:
Girl gets vein grown from her own stem cells for transplant
Girl's stem cells used to make her a new vein
By Dr. Matthew Watson
1:00 AM Since the new vein was transplanted, the 10-year-old with blockage to her liver is much improved.
The Associated Press
LONDON - For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 3-inch section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary, and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Original post:
Girl's stem cells used to make her a new vein
Vein grown from stem cells
By Sykes24Tracey
LONDON For the first time doctors have successfully transplanted a vein grown with a patients own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girls doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 3-1/2-inch section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girls bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
This is the future for tissue engineering, where we can make tailor-made organs for patients, said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the studys authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing acute pressures on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girls condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
View post:
Vein grown from stem cells
Cell Therapeutics Appoints New Chief Medical Officer
By Dr. Matthew Watson
June 14, 2012, SEATTLE /PRNewswire/ -- Cell Therapeutics, Inc. ("CTI") (NASDAQ and MTA: CTIC), a company focused on translating science into novel cancer therapies, today announced that former OncoMed Pharmaceuticals executive, Steven E. Benner, M.D., M.H.S., has joined CTI as Executive Vice President and Chief Medical Officer ("CMO"), reporting to James A. Bianco, M.D., Chief Executive Officer. Dr. Benner will take over all drug development activities at the company.Dr. Benner was previously senior vice president and chief medical officer at OncoMed, a venture-backed biotechnology company focused on the development of cancer stem cell targeting agents. Prior to OncoMed, he was CMO at Protein Design Labs ("PDL"), where he was accountable for all development activities including clinical development, clinical operations, biometry, regulatory affairs, and safety. He also served as Chair of the Portfolio and Clinical Development Management Committees of PDL. Before PDL he held several senior executive roles at Bristol-Myers Squibb in global development, life cycle management, and licensing and alliances.
"Dr. Benner brings to CTI his proven track record of success in advancing the development of innovative therapies for cancer patients," said Dr. Bianco. "His appointment is the first step in re-aligning our portfolio efforts, as we focus on advancing pacritinib into Phase III pivotal studies later this year."
With the new company initiative of the planned Pixuvri launch in Europe later this year, Jack W. Singer, M.D., will assume the newly-created role of Executive Vice President ("EVP") of Global Medical Affairs and Translational Medicine, responsible for cancer drug development strategy, global medical affairs, and life cycle management.
"Given Jack's impressive academic credentials, the respect he receives from an international network of key opinion leaders in the field, and his track record in oncology drug development, this was a natural promotion as we introduce Pixuvri in Europe," said Dr. Bianco.
"CTI has assembled an impressive late-stage portfolio of novel targeted therapies that address a spectrum of blood related cancers," said Dr. Benner. "With two drugs in Phase III and two more expected to enter Phase III trials within a year, this is an exciting and transformational time to join the team at CTI."
About Pixuvri (pixantrone)Pixuvri is a novel aza-anthracenedione with unique structural and physio-chemical properties. Unlike related compounds,Pixuvri forms stable DNA adducts and in preclinical models has superior anti-lymphoma activity compared to related compounds. Pixuvri was structurally designed so that it cannot bind iron and perpetuate oxygen radical production or form a long-lived hydroxyl metabolite -- both of which are the putative mechanisms for anthracycline induced acute and chronic cardiotoxicity. These novel pharmacologic properties allow Pixuvri to be administered to patients with near maximal lifetime exposure to anthracyclines without unacceptable rates of cardiotoxicity, and, because Pixuvri is not a vesicant, allow it to be safely delivered via a peripheral intravenous catheter.
In May 2012 Pixuvri received conditional marketing authorization in the EU as monotherapy for the treatment of adult patients with multiply relapsed or refractory aggressive NHL. The benefit of pixantrone treatment has not been established in patients when used as fifth line or greater chemotherapy in patients who are refractory to last therapy.The Summary of Product Characteristics ("SmPC") has the full prescribing information, including the safety and efficacy profile of Pixuvri in the approved indication. The SmPC is available at http://ec.europa.eu/health/documents/communityregister/html/h764.htm#ProcList.
Pixuvri is currently available in the EU through Named Patient Programs.
Pixuvri does not have marketing approval in the United States.
About Conditional Marketing AuthorizationSimilar to accelerated approval regulations inthe United States, conditional marketing authorizations are granted in the EU to medicinal products with a positive benefit/risk assessmentthat address unmet medical needs and whose availability would result in a significant public health benefit. A conditional marketing authorization is renewable annually. Under the provisions of the conditional marketing authorization for Pixuvri, CTI will be required to complete a post-marketing study aimed at confirming the clinical benefit previously observed.
Go here to see the original:
Cell Therapeutics Appoints New Chief Medical Officer
Advanced Cell Technology to Present at the 2012 Bio International Convention and the Clinical Outlooks for …
By NEVAGiles23
MARLBOROUGH, Mass.--(BUSINESS WIRE)--
Advanced Cell Technology, Inc. (ACT; OTCBB: ACTC), a leader in the field of regenerative medicine, announced today that the company is presenting at two upcoming conferences: the 2012 Bio International Convention and Clinical Outlooks for Regenerative Medicine meeting, both in Boston, on Tuesday, June 19. The presentations will cover the companys three ongoing clinical trials using human embryonic stem cell-derived retinal pigment epithelial cells to treat macular degeneration, and other programs.
Gary Rabin, chairman and CEO, will present at the 2012 Bio International Convention on Tuesday, June 19 at 8:15 a.m. EDT, at the Boston Convention & Exhibition Center.
Matthew Vincent, Ph.D., director of business development, will present at the Clinical Outlooks for Regenerative Medicine meeting at 9:15 a.m. EDT on the same date, at the Starr Center, Schepens Eye Research Institute, at 185 Cambridge Street in Boston.
Both presentation slide decks will be available on the conference presentations section of the ACT website.
About Advanced Cell Technology, Inc.
Advanced Cell Technology, Inc., is a biotechnology company applying cellular technology in the field of regenerative medicine. For more information, visit http://www.advancedcell.com.
Forward-Looking Statements
Statements in this news release regarding future financial and operating results, future growth in research and development programs, potential applications of our technology, opportunities for the company and any other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Any statements that are not statements of historical fact (including statements containing the words will, believes, plans, anticipates, expects, estimates, and similar expressions) should also be considered to be forward-looking statements. There are a number of important factors that could cause actual results or events to differ materially from those indicated by such forward-looking statements, including: limited operating history, need for future capital, risks inherent in the development and commercialization of potential products, protection of our intellectual property, and economic conditions generally. Additional information on potential factors that could affect our results and other risks and uncertainties are detailed from time to time in the companys periodic reports, including the report on Form 10-K for the year ended December 31, 2011. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. Forward-looking statements are based on the beliefs, opinions, and expectations of the companys management at the time they are made, and the company does not assume any obligation to update its forward-looking statements if those beliefs, opinions, expectations, or other circumstances should change. There can be no assurance that the Companys clinical trials will be successful.
Read more from the original source:
Advanced Cell Technology to Present at the 2012 Bio International Convention and the Clinical Outlooks for ...
International Stem Cell Corporation Scientists Create New Protein-Based Stem Cell Technology
By daniellenierenberg
CARLSBAD, Calif.--(BUSINESS WIRE)--
International Stem Cell Corporation (ISCO) http://www.internationalstemcell.com announced that scientists in its wholly-owned subsidiary, Lifeline Cell Technology (LCT), have developed a technology to modify human stem cells by using engineered proteins, called "transducible transcription factors" or "TTFs." TTFs are designed to pass into stem cells and direct the stem cells to change into specific cell types that can be both therapeutically-useful and can be used as revenue-generating research products.
In contrast to more traditional cell therapy methods this technology does not require the use of viruses or chemicals, and has the potential to produce safe therapeutic cells from stem cells. In addition, the TTF proteins are naturally eliminated by the cells when no longer required, a characteristic that further improves safety. The Company intends that this technology, once perfected, will first be used to create revenue-generating research products for sale through Lifeline Cell Technologys international distribution channels to the academic, biotechnology and pharmaceutical markets for cellular proteins, including the quickly growing markets for the study of stem cell biology and drug testing.
According to Jeffrey Janus, Lifeline Cell Technologys CEO, These proteins can be sold into the market for cellular proteins which exceeds $700 million and represents an excellent opportunity for LCT to grow sales. Since the technology also has broad application in research and therapy, it should provide ISCO with future out-licensing opportunities to the biotechnology and pharmaceutical industries.
About International Stem Cell Corporation
International Stem Cell Corporation is focused on the therapeutic applications of human parthenogenetic stem cells (hpSCs) and the development and commercialization of cell-based research and cosmetic products. ISCO's core technology, parthenogenesis, results in the creation of pluripotent human stem cells from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells for hundreds of millions of individuals of differing genders, ages and racial background with minimal immune rejection after transplantation. hpSCs offer the potential to create the first true stem cell bank, UniStemCell. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology (www.lifelinecelltech.com), and stem cell-based skin care products through its subsidiary Lifeline Skin Care (www.lifelineskincare.com). More information is available at http://www.internationalstemcell.com or follow us on Twitter @intlstemcell.
To receive ongoing corporate communications, please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0
Forward-looking Statements
Statements pertaining to anticipated developments, the potential benefits of research programs and products, and other opportunities for the company and its subsidiaries, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update forward-looking statements.
Read this article:
International Stem Cell Corporation Scientists Create New Protein-Based Stem Cell Technology
Osiris Receives Second Approval for Life-Saving Stem Cell Drug; Prochymal Granted Marketing Consent by New Zealand
By LizaAVILA
COLUMBIA, Md.--(BUSINESS WIRE)--
Osiris Therapeutics, Inc. (OSIR), announced today it has received consent from New Zealand to market its first-in-class stem cell therapy Prochymal (remestemcel-L), for the treatment of acute graft-vs-host disease (GvHD) in children. With this decision New Zealand joins Canada, which last month became the worlds first internationally recognized regulatory authority to grant approval to a stem cell drug. Prochymal is also the first therapy approved for GvHD - a devastating complication of bone marrow transplantation that kills up to 80 percent of children affected, many within just weeks of diagnosis.
"With each of our approvals it becomes clearer that the time for life-saving stem cell therapies in the practice of medicine has arrived, and we are humbled to have a leading role, said C. Randal Mills, Ph.D., President and Chief Executive Officer of Osiris. I would like to thank the professionals at Medsafe for their thoughtful and expeditious review of this complex application. I would also like to thank the team at Osiris that continues to do an outstanding job of making Prochymal available to children around the world suffering from the devastating effects of GvHD."
Osiris submitted a New Medicine Application (NMA) to Medsafe(New Zealand's medical regulatory agency) in May of 2011, and was granted Priority Review in June of 2011. Priority review provides expedited review for new drugs which offer a significant clinical advantage over current treatment options. Prochymal was granted provisional consent under Section 23 of the Medicines Act 1981.
"The incidence of GvHD is likely to rise as the demographic profile of our transplant population evolves," said Hans Klingemann, M.D., Ph.D., a Professor of Medicine and the Director of the Bone Marrow & Hematopoietic Stem Cell Transplant Program at Tufts University School of Medicine. "Effective strategies to manage the often lethal consequences of GvHD reduce the overall risk to transplantation and provide the transplant physician with better options when approaching their most difficult cases.
Clinical trials have shown that Prochymal is able to induce an objective, clinically meaningful response in 61-64 percent of children with GvHD that is otherwise refractory to treatment. Furthermore, treatment response with Prochymal resulted in a statistically significant improvement in survival.
As a mother who watched my son Christian suffer and die from the horrifying effects of GvHD, while waiting for the regulatory approvals necessary to allow him access to Prochymal, words cannot express how happy I am that significant progress is finally being made, said Sandy Barker, President and Co-founder of the Gold Rush Cure Foundation. We are proud to stand side-by-side with Osiris in this historic battle for our children around the world. Our motto is 'not one more child, not one more family' and when it comes to GvHD mortality, zero is the only acceptable number.
Prochymal is now approved in Canada and New Zealand, and is currently available in seven other countries including the United States under an Expanded Access Program (EAP). It is expected that Prochymal will be commercially available in New Zealand later this year.
About GvHD
GvHD represents a major unmet medical need with no approved treatment until Prochymal. GvHD is the leading cause of transplant related mortality, in which immune cells contained within the transplanted marrow recognize the recipient as foreign and mount an immunologic attack. Severe GvHD can cause blistering of the skin, intestinal hemorrhage and liver failure. Severe GvHD is extremely painful and fatal in up to 80 percent of cases. Currently, steroids are used as first-line therapy with a success rate of only 30-50 percent. When steroids fail, treatment options are limited to immunosuppressive agents used off-label with little benefit and significant toxicities.
First Vein Grown From Human Stem Cells Transplanted
By daniellenierenberg
By Makiko Kitamura - 2012-06-13T22:30:00Z
The first vein grown from a patients own stem cells was successfully transplanted into a 10-year-old girl, potentially offering a way for those lacking healthy veins to undergo dialysis or heart bypass surgery.
A team led by Michael Olausson of the University of Gothenburg took a 9-centimeter (3.5-inch) segment of vein from a human donor and removed all living cells, the Swedish researchers wrote in a study in The Lancet medical journal today. The resulting protein scaffolding was injected with stem cells from the girls bone marrow, and two weeks later was implanted in the patient, who had a blockage in the vein that carries blood from the spleen and intestines to the liver.
The result points to what may be a safer source of stem cells, the building blocks of life which can grow into any type of tissue in the body. Using cells from the patient may limit the risk that the immune system would attack the transplant, which can occur with tissue taken from healthy people and given to the sick. The girl hasnt developed signs of rejection, even without taking drugs to suppress her immune system, the researchers said.
The successful procedure establishes the feasibility and safety of a novel paradigm for treatment, the researchers wrote in the study. Our work opens interesting new areas of research, including trying to reproduce arteries for surgical use in patients.
The recipient had no complications from the operation, and a year later, has grown 6 centimeters and gained 5 kilograms (11 pounds) in weight.
Olausson and colleagues report suggests that tissue- engineered vascular grafts are promising, but one-off experiences such as the procedure they describe need to be converted into full clinical trials in key target populations, Martin Birchall and George Hamilton, professors at the University College London, wrote in a commentary accompanying the Lancet publication.
The study was funded by the Swedish government.
To contact the reporter on this story: Makiko Kitamura in London at mkitamura1@bloomberg.net
To contact the editor responsible for this story: Phil Serafino at pserafino@bloomberg.net
Read the original here:
First Vein Grown From Human Stem Cells Transplanted
Doctors transplant vein grown with patient's own stem cells
By Sykes24Tracey
For the first time, doctors have successfully transplanted a vein grown with a patients own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. In March, the girls doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 3 1/2-inch section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girls bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
This is the future for tissue engineering, where we can make tailor-made organs for patients, said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the studys authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing acute pressures on health systems that might make these treatments impractical for many patients.
Ms. Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girls condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
See the rest here:
Doctors transplant vein grown with patient's own stem cells
Doctors make new vein using patient's own stem cells for transplant into 10-year-old girl
By raymumme
LONDON For the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 9-centimeter (3 -inch) section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girl's condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
See the article here:
Doctors make new vein using patient's own stem cells for transplant into 10-year-old girl
Doctors make new vein with girl's own stem cells
By Dr. Matthew Watson
LONDONFor the first time doctors have successfully transplanted a vein grown with a patient's own stem cells, another example of scientists producing human body parts in the lab.
In this case, the patient was a 10-year-old girl in Sweden who was suffering from a severe vein blockage to her liver. Last March, the girl's doctors decided to make her a new blood vessel to bypass the blocked vein instead of using one of her own or considering a liver transplant.
They took a 9-centimeter (3 1/2-inch) section of vein from a deceased donor, which was stripped of all its cells, leaving just a hollow tube. Using stem cells from the girl's bone marrow, scientists grew millions of cells to cover the vein, a process that took about two weeks. The new blood vessel was then transplanted into the patient.
Because the procedure used her own cells, the girl did not have to take any drugs to stop her immune system from attacking the new vein, as is usually the case in transplants involving donor tissue.
"This is the future for tissue engineering, where we can make tailor-made organs for patients," said Suchitra Sumitran-Holgersson of the University of Gothenburg, one of the study's authors.
She and colleagues published the results of their work online Thursday in the British medical journal Lancet. The work was paid for by the Swedish government.
The science is still preliminary and one year after the vein was transplanted, it needed to be replaced with another lab-grown vein when doctors noticed the blood flow had dropped. Experts from University College London raised questions in an accompanying commentary about how cost-effective the procedure might be, citing "acute pressures" on health systems that might make these treatments impractical for many patients.
Sumitran-Holgersson estimated the cost at between $6,000 and $10,000.
Similar methods have already been used to make new windpipes and urethras for patients. Doctors in Poland have also made blood vessels grown from donated skin cells for dialysis patients.
Patients with the girl's condition are usually treated with a vein transplant from their own leg, a donated vein, or a liver transplant. Those options can be complicated in children and using a donated vein or liver also requires taking anti-rejection medicines.
Read the rest here:
Doctors make new vein with girl's own stem cells
"Magical State" of Embryonic Stem Cells May Help Overcome Hurdles to Therapeutics
By LizaAVILA
Salk researcher's findings suggest a potentially favorable time to harvest stem cells for therapy and may reveal genes crucial to tissue production
LA JOLLA, CA----With their potential to treat a wide range of diseases and uncover fundamental processes that lead to those diseases, embryonic stem (ES) cells hold great promise for biomedical science. A number of hurdles, both scientific and non-scientific, however, have precluded scientists from reaching the holy grail of using these special cells to treat heart disease, diabetes, Alzheimer's and other diseases.
In a paper published June 13 in Nature, scientists at the Salk Institute for Biological Studies report discovering that ES cells cycle in and out of a "magical state" in the early stages of embryo development, during which a battery of genes essential for cell potency (the ability of a generic cell to differentiate, or develop, into a cell with specialized functions) is activated. This unique condition, called totipotency, gives ES cells their unique ability to turn into any cell type in the body, thus making them attractive therapeutic targets.
"These findings," says senior author Samuel L. Pfaff, a professor in Salk's Gene Expression Laboratory, "give new insight into the network of genes important to the developmental potential of cells. We've identified a mechanism that resets embryonic stem cells to a more youthful state, where they are more plastic and therefore potentially more useful in therapeutics against disease, injury and aging."
ES cells are like silly putty that can be induced, under the right circumstances, to become specialized cells-for example, skin cells or pancreatic cells-in the body. In the initial stages of development, when an embryo contains as few as five to eight cells, the stem cells are totipotent and can develop into any cell type. After three to five days, the embryo develops into a ball of cells called a blastocyst. At this stage, the stem cells are pluripotent, meaning they can develop into almost any cell type. In order for cells to differentiate, specific genes within the cells must be turned on.
Pfaff and his colleagues performed RNA sequencing (a new technology derived from genome-sequencing to monitor what genes are active) on immature mouse egg cells, called oocytes, and two-cell-stage embryos to identify genes that are turned on just prior to and immediately following fertilization. Pfaff's team discovered a sequence of genes tied to this privileged state of totipotency and noticed that the genes were activated by retroviruses adjacent to the stem cells.
Nearly 8 percent of the human genome is made up of ancient relics of viral infections that occurred in our ancestors, which have been passed from generation to generation but are unable to produce infections. Pfaff and his collaborators found that cells have used some of these viruses as a tool to regulate the on-off switches for their own genes. "Evolution has said, 'We'll make lemonade out of lemons, and use these viruses to our advantage,'" Pfaff says. Using the remains of ancient viruses to turn on hundreds of genes at a specific moment of time in early embryo development gives cells the ability to turn into any type of tissue in the body.
From their observations, the Salk scientists say these viruses are very tightly controlled-they don't know why-and active only during a short window during embryonic development. The researchers identified ES cells in early embryogenesis and then further developed the embryos and cultured them in a laboratory dish. They found that a rare group of special ES cells activated the viral genes, distinguishing them from other ES cells in the dish. By using the retroviruses to their advantage, Pfaff says, these rare cells reverted to a more plastic, youthful state and thus had greater developmental potential.
Pfaff's team also discovered that nearly all ES cells cycle in and out of this privileged form, a feature of ES cells that has been underappreciated by the scientific community, says first author Todd S. Macfarlan, a former postdoctoral researcher in Pfaff's lab who recently accepted a faculty position at the Eunice Kennedy Shriver National Institute of Child Health and Human Development. "If this cycle is prevented from happening," he says, "the full range of cell potential seems to be limited."
It is too early to tell if this "magical state" is an opportune time to harvest ES cells for therapeutic purposes. But, Pfaff adds, by forcing cells into this privileged status, scientists might be able to identify genes to assist in expanding the types of tissue that can be produced.
See the original post here:
"Magical State" of Embryonic Stem Cells May Help Overcome Hurdles to Therapeutics
Robin Roberts' Personal Story Highlights Need for More Bone Marrow Donors in the United States
By Sykes24Tracey
BOCA RATON, Fla., June 13, 2012 (GLOBE NEWSWIRE) -- Good Morning America co-host Robin Roberts' decision to go public with the fact that she has a rare blood disorder was courageous and sheds light on the need for more bone marrow donors in the United States.
"In Robin's case, her sister turned out to be a perfect match, but the fact is, about two out of every three patients who need a transplant won't find a match in their family and will need to reach out to strangers to help save their lives," said Jay Feinberg, CEO of Gift of Life Bone Marrow Foundation, an international bone marrow registry based in Boca Raton, FL.
Approximately 10,000 people are diagnosed each year with a blood disease in which a bone marrow transplant could save their life, yet only half receive one. That is why the more people who are willing to donate, the better the chance of saving a life.
Feinberg knows that all too well. He was diagnosed with Leukemia in the early 1990s. He found his match in 1995 after more than 50,000 people were tested worldwide. He turned that grassroots movement into the not-for-profit Gift of Life Bone Marrow Foundation to get more donors into the worldwide registry and educate the public on the importance of donating. For its part, Gift of Life has facilitated more than 2,500 matches in its history and entered more than 200,000 people into the registry.
"It only takes one match to save a life, and that's what keeps us passionate and focused every day," said Feinberg, who found his match from a young woman who registered at the very last marrow drive organized for him. "The fact that someone as high profile as Robin Roberts is willing to share her personal story with the world will create a lot of new interest in people willing to become donors and to that end, that's a very positive thing. We wish her well in her upcoming treatments."
Gift of Life Bone Marrow Foundation, through its network of life-saving volunteers, organizes dozens of bone marrow drives per year around the world. Feinberg said becoming a donor is easy. A cotton swab is rubbed on the inside of the mouth to collect cells used for tissue typing. That information is then entered into the registry where anyone needing a transplant can turn to see if they find someone compatible. If a match is made, the donor is notified by phone and then undergoes one more test to confirm he or she is a perfect match. If so, the donor then undergoes a complete physical exam, and then the donation procedure, which involves either the taking of blood stem cells from the arms, or bone marrow from the hip. Those life-saving cells are then transplanted into the sick patient. The donor's marrow will eventually replenish itself. On average, one in 1,000 of Gift of Life donors is asked to donate every year.
For more information on bone marrow and blood stem cell transplants, and to see answers to frequently asked questions, please log onto http://www.giftoflife.org.
About the Gift of Life Bone Marrow Foundation
Gift of Life helps children and adults suffering from leukemia, lymphoma, other cancers and genetic disorders find donors for blood and marrow transplants. Headquartered in Boca Raton, Florida, Gift of Life is an internationally recognized bone marrow, blood stem cell, and umbilical cord blood registry. Through its life-saving work, Gift of Life is a world leader helping children and adults find the matches they need when they need them. For more information log on to http://www.giftoflife.org.
See the rest here:
Robin Roberts' Personal Story Highlights Need for More Bone Marrow Donors in the United States
Scientists see new hope for restoring vision with stem cell help
By LizaAVILA
This is a human ES cell-derived optic cup generated in our self-organization culture (culture day 26). Bright green, neural retina; off green, pigment epithelium; blue, nuclei; red, active myosin (strong in the inner surface of pigment epithelium). Credit: Nakano et al. Cell Stem Cell Volume 10 Issue 6
Human-derived stem cells can spontaneously form the tissue that develops into the part of the eye that allows us to see, according to a study published by Cell Press in the 5th anniversary issue of the journal Cell Stem Cell. Transplantation of this 3D tissue in the future could help patients with visual impairments see clearly.
"This is an important milestone for a new generation of regenerative medicine," says senior study author Yoshiki Sasai of the RIKEN Center for Developmental Biology. "Our approach opens a new avenue to the use of human stem cell-derived complex tissues for therapy, as well as for other medical studies related to pathogenesis and drug discovery."
During development, light-sensitive tissue lining the back of the eye, called the retina, forms from a structure known as the optic cup. In the new study, this structure spontaneously emerged from human embryonic stem cells (hESCs)cells derived from human embryos that are capable of developing into a variety of tissuesthanks to the cell culture methods optimized by Sasai and his team.
The hESC-derived cells formed the correct 3D shape and the two layers of the optic cup, including a layer containing a large number of light-responsive cells called photoreceptors. Because retinal degeneration primarily results from damage to these cells, the hESC-derived tissue could be ideal transplantation material.
Beyond the clinical implications, the study will likely accelerate the acquisition of knowledge in the field of developmental biology. For instance, the hESC-derived optic cup is much larger than the optic cup that Sasai and collaborators previously derived from mouse embryonic stem cells, suggesting that these cells contain innate species-specific instructions for building this eye structure. "This study opens the door to understanding human-specific aspects of eye development that researchers were not able to investigate before," Sasai says.
The anniversary issue containing Sasai's study will be given to each delegate attending the 2012 ISSCR meeting in Yokohama, Japan. To highlight the ISSCR meeting and showcase the strong advances made by Japanese scientists in the stem cell field, the issue will also feature two other papers from Japanese authors, including the research groups of Akira Onishi and Jun Yamashita. In addition, the issue contains a series of reviews and perspectives from worldwide leaders in stem cell research.
More information: Nakano et al.: "Self-Formation of Optic Cups and Storable Stratified Neural Retina from Human ESCs." DOI 10.1016/j.stem.2012.05.009
Journal reference: Cell Stem Cell
Provided by Cell Press
Follow this link:
Scientists see new hope for restoring vision with stem cell help