Physiology, Spinal Cord – StatPearls – NCBI Bookshelf
By daniellenierenberg
Introduction
Within the spinal column lies the spinal cord, a vital aspect of the central nervous system (CNS). The three primary roles of the spinal cord are to send motor commands from the brain to the body, send sensory information from the body to the brain, and coordinate reflexes. The spinal cordis organized segmentally, with thirty-one pairs of spinal nerves emanating from it. A spinal cord injury disrupts this conduit between the body and brain and canlead to deficits in sensation, movement, and autonomic regulation, as well as death.
The spinal cord is composed of gray and white matter, appearing in a cross-section as H-shaped gray matter surrounded by white matter. The gray matter consists of the cell bodies of motor and sensory neurons, interneurons,and neuropils (neuroglia cells and mostly unmyelinated axons). In contrast, the white matter is composed of interconnecting fiber tracts, which are primarily myelinated sensory and motor axons. The supports of the gray matters H make up the right dorsal, right ventral, left dorsal, and left ventral horns. Running longitudinally through the center of the spinal cord is the central canal, which is continuous with the brains ventricles and filled with cerebrospinal fluid (CSF).
The white matteris organized into tracts. Ascending tracts carry information from the sensory receptors to higher levels of the CNS, while descending tracts carry information from theCNS to the periphery. The major tracts and their most defining features are as follows:[1]
Ascending Tracts
Dorsal column: contains the gracile fasciculus and cuneate fasciculus, which togetherform the dorsal funiculus. The dorsal column is responsible for pressure and vibration sensation, two-point discrimination, movement sense, and conscious proprioception. The dorsal column decussates at the superior portion of the medulla oblongata and forms the medial lemniscus.
Lateral spinothalamic: carries pain and temperature information. The lateral spinothalamic tract decussates at the anterior commissure, two segments above the entry to the spinal cord.
Descending Tracts
Lateral and anterior corticospinal: involved in conscious control of the skeletal muscle. The majority of lateral corticospinal tract fibers decussate at the inferior portion of the medulla oblongata, while anterior corticospinal descends ipsilaterally in the spinal cord and decussates at the segmental level. The lateral corticospinal tract, also called the pyramidal tract, innervates primarily contralateralmuscles of the limbs, while the anterior corticospinal tract innervates proximal muscles of the trunk.
Vestibulospinal: carries information from the inner ear to control head positioning and is involved in modifying muscle tone to maintain posture and balance. The vestibulospinal tract does not decussate.
Rubrospinal: involved in the movement of the flexor and extensor muscles.The rubrospinal tract originates from the red nuclei in the midbrain and decussates at the start of its pathway.
There is a laminar distribution of neurons in the gray matter, characterized by density and topography:
Lamina II is composed mainly of islet cells with rostrocaudal axes, which contain GABA and are thought to be inhibitory, and stalked cells with dorsoventral dendritic trees.
Lamina V and VI are composed of medium-sized multipolar neurons that can be fusiform or triangular. These neurons communicate with the reticular formation of the brainstem.
Lamina VII is composed of homogenous medium-sized multipolar neurons and contains, in individual segments, well-defined nuclei, including the intermediolateral nucleus (T1-L1), which has autonomic functions, and the dorsal nucleus of Clarke (T1-L2), which make up the dorsal spinocerebellar tract.
Lamina VIII consists of neurons with dorsoventrally polarized dendritic trees.
Lamina IX has the cell bodies of motor neurons, with dendrites extending dorsally into laminas as far as VI. Lamina IX also has Renshaw cells, inhibitory interneurons, placed at the medial border of motor nuclei.
Neurulation begins in the trilaminar embryo when part of the mesoderm differentiates into the notochord. The formation of the notochord signals the overlying ectoderm to form the neural plate, the first structure that will become the nervous system. The neural plate folds in on itself, creating the neural tube, initially open at both ends and ultimately closed. From the neural tube comes the primitive brain and spinal cord.[9]The development of the nervous system begins seventeen days after gestation, and in the fifth week, myotomes start to form, allowing the development of rudimentary reflex circuitries. Myelination of the motor tracts begins in the first few months of life and continues into adolescence.
An interesting note is that reciprocal excitation changes to inhibition between nine and twelve months of age. Before that age, supraspinal descending fibers activate interneurons, resulting in extension or flexion. During this period of development, glycine and GABA are excitatory.[10]
The spinal cord is the conduit between the brain and the rest of the body. It sends motor commands from the motor cortex to the muscles of the body and sensory information from the afferent fibers to the sensory cortex. Additionally, the spinal cord can act without signals from the brain in certain instances. The spinal cord independently coordinates reflexes using reflex arcs.Reflex arcs allow the body to respond to sensory information without waiting for input from the brain. The reflex arc starts with a signal from a sensory receptor, which is carried to the spinal cord via a sensory nerve fiber, synapsed on an interneuron, carried over to the motor neuron, which stimulates an effector muscle or organ.[11]The spinal cord also has central pattern generators, which are interneurons that form the neural circuits, which control rhythmic movements. Although the existence of central pattern generators in humans is controversial, the lumbar spinal cord produces rhythmic muscle activation without volitional motor control or step-specific sensory feedback, suggesting their role in human movement.[12]
Three connective tissue layers,termed meninges, conceal the spinal cord. Directly lining the spinal cord is the pia mater, which also thickens to form the denticulate ligament, anchoring the spinal cord in the middle of the vertebral canal. The next layer of meninges is the arachnoid mater.Between the pia mater and arachnoid mater is the subarachnoid space, which contains CSF. On top of the arachnoid mater is the last layer of meninges, the dura mater, then the epidural space separating the meninges from the vertebral column.[13]
The spinal cord extends from the medulla oblongata of the brain stem at the level of the foramen magnum. In an adult human, the spinal cord gives rise to thirty-one pairs of spinal nerves, each of which originates from the adjacent spinal cord segment:
Spinal nerves emerge from the spinal cord as rootlets, whichjoin together to form two nerve roots.The anterior nerve roots contain motor fibers extending from the anterior horn to peripheral target organs. The motor neurons are multipolar, with at least two dendrites, a single axon, and one or more collateral branches. They control skeletal muscles and the autonomic nervous system. The posterior nerve roots contain sensory fibers and dorsal root ganglia. They contain sensory fibers transmitting sensory information from the periphery towards the CNS. The sensory neurons located at the dorsal root ganglia are pseudounipolar. The anterior and posterior nerve roots converge into spinal nerves, which split into dorsal and ventral rami.A dermatome is a skin area innervated by a single spinal nerve root (or spinal cord segment).
There are five spinal plexuses, which include sensory and motor nerves from the anterior rami:
Cervical plexus (C1-C5): the deep branches innervate neck muscles, and the superficial branches innervate the skin on the neck, head, and chest. The cranial plexus also has an autonomic function, including controlling the diaphragm and interactions with the vagus nerve.
Brachial (C5-T1): controls movement and sensation of the upper extremity.
Lumbar (L1-L4): controls movement and sensation of the abdominal wall, thigh, and external genitals.
Sacral (L4, L5, S1-S4): controls movement and sensation of the foot, leg, and thigh.
Coccygeal (S4, S5, Co): innervates the skin around the tailbone.
In adults, the spinal cord tapers to an end, termed the conus medullaris, at the second lumbar vertebra level. Past the conus medullaris, a bundle of spinal roots extends termed the cauda equina. The cauda equina and the subarachnoid space continue until S2 and is the target location for a lumbar puncture (spinal tap).
Electrophysiological Testing
Evoked potentials (EPs) measure electrical signals going to the brain and can determine whether there is motor or somatosensory impairment. The signal is detected by electroencephalography (EEG) or electromyography (EMG). Evoked potentialsmay be used to assess spinal cord damage in the setting of spinal cord injury and tumors, and measure functional impairment and predict disease progression in multiple sclerosis.[15]Somatosensory evoked potentials (SEPs) and motor evoked potentials (MEPs)are frequentlyused intra-operatively for monitoring and can be used post-operatively as surrogate endpoints to check muscle strength and sensory status.[16]
Nerve conduction studies determine whether there has been an injury to a spinal nerve root, peripheral nerve, neuromuscular junction, muscle, cranial nerve, or spinal nerve. They can also be used to pinpoint spinal cord lesions.Nerve conduction studies work by stimulating nerves close to the skin or using a needle placed near a nerve or nerve root. Neurologists often use them with needle electromyograms.[17]
Lumbar Puncture
A lumbar puncture, or spinal tap, samples the CSF from the subarachnoid space. The needle to obtain the sample should be inserted between lumbar spinal canal levels L3 and L4 to avoid contact with the spinal cord.[18]TheCSF is then sent to a laboratory to establish whether any insult can be determined.For instance, a lumbar puncture can confirm or exclude bacterial meningitis, which will produce a cloudy fluid suggestive of a high leukocyte count. It is also important to know when not to use a lumbar puncture. Contraindications to lumbar puncture include signs of cerebral herniation, focal neurological signs, uncorrected coagulopathies, or cardiorespiratory compromise.[19]
Deep Tendon Testing
One aspect of theneurological exam is a test of the deep tendon reflexes, which are involuntary motor responses to various stimuli that function via reflex arcs within the spinal cord. They can be used to test the function of the motor and sensory nerves at specific spinal cord levels.Reflex grading is on a scale of 0 (absent reflex) to 5+ (sustained clonus).[20]Some commonly tested reflexes are as follows:
Additionally, the Babinski reflex, or the extensor plantar reflex, can be seen in newborns but is an abnormal response aftersix to twelve months of age. If the Babinski reflex is seen after 12 months of age, it may indicate an abnormality in the corticospinal system.[21]
Spinal Cord Injury
Primary spinal cord injury occurs due to local deformation of the spine, such as direct compression. Secondary spinal cord injury occurs following primary damage and involves cascades of biochemical and cellular processes, including electrolyte disturbances, free radical damage, edema, ischemia, and inflammation.[22]Secondary spinal cord injury has several phases: acute, subacute, and chronic. During the acute phase (up to 48 hours after the primary injury), hemorrhage and ischemia lead to ion balance disruption, excitotoxicity, and inflammation. During the subacute phase (up to two weeks following primary injury), there is a phagocytic response and a reactive proliferation of astrocytes, which leads to a glial scar in the chronic phase. The thinking is that scarification is the critical component to permanent disability because it prevents axonal regeneration; axons otherwise could regenerate, but their growth is blocked. However, that notion has been subject to challenge, and there are suggestions that astrocyte scar formation could aid in regeneration.[23]In the chronic phase (over six months after the primary injury), the scarification process is complete.[24]
Developmental
Open neural tube defects occur when there is a failure of the neural tube to close. If it fails to close at the cranial end, the fetusmay develop anencephaly. If the failure is at the caudal end, the fetusmay have myelomeningocele or open spina bifida. Craniorachischisis can also occur if the entire neural tube remains open. Closed neural tube defects are spinal cord development problems that are skin-covered, such as occult spina bifida.Folic acid supplements lower the risk of neural tube defects, although severe folate deficiency in mouse models does not lead to neural tube defects unless there is already a genetic predisposition. Suggestions are that folate can overcome a genetic predispositionfor adverse effects, potentially leading to neural tube defects.[25]
A spinal cord injury can be classified as complete or incomplete. A complete injury, based on the International Standard Neurological Classification of Spinal Cord Injury (ISNCSCI) examination, developed by the American Spinal Cord Injury Association (ASIA), implies that there is no sensation at the inferior segments of the spinal cord (S4-S5); no deep anal pressure (DAP) or voluntary anal contraction (VAC) is present. If no perianal sensation is present and DAP and VAC are absent, the present function below the level of injury is a zone of partial preservation.[26]
An injury in the cervical region often results in quadriplegia if both sides of the spinal cord are affected and hemiplegia if only one side is affected. Nerves from C3, C4, and C5 stimulate the phrenic nerve, which controls the diaphragm, so injury to C4 and above may result in a permanent need for a ventilator. An injury to the thoracic region often limits the function of nerves related to the lower torso and lower extremities. Usually, it does not affect the upper torso and upper extremities, except in rare cases such as subacute posttraumatic ascending myelopathy (SPAM).[27]Injury to thespinal cord often causes loss of bowel and bladder control, loss of sexual function, and blood pressure dysregulation, as the spinal cordrelays autonomic and somatic information.
Syndromes
Several syndromes correlate with spinal cord injury. Central cord syndrome usually occurs in individuals who suffer a hyperextension injury, and it often leads to incomplete injury with weakness predominantly affecting the upper limbs. The reason for this phenomenon is the organization of the fibers in the spinal cord: the fibers running to the lower extremities are longer than those running to the upper extremities; the longer fibers are located more laterally in the spinal cord (L-L rule). As the central portion of the spinal cord is injured, there is a sparing of the fibers running to the lower extremities. Brown-Sequard syndrome is due to a spinal cord hemisection,leading to a complete loss of sensation at the level of the lesion, as well as deficits below the lesion loss of proprioception, vibration, and motor control, ipsilaterally, and a loss of pain and temperature sensation, contralaterally. Anterior cord syndrome is due to a compromised blood supply to the anterior two-thirds of the spinal cord, damaging the corticospinal and spinothalamic tracts.This syndrome is associated with several deficits at and below the lesion, including motor loss and a loss of pain and temperature sensation. However, light touch and joint position sense from the dorsal columns are left intact.[26]Injury to T12-L2 segmentsmay result in conus medullaris syndrome, while injury to L3-L5 segmentscan lead to cauda equina syndrome. Usually, these syndromes present as incomplete injuries and result in neurogenic bladder and/or bowel, loss of sexual function, and perianal loss of sensation.[28]
See more here:
Physiology, Spinal Cord - StatPearls - NCBI Bookshelf
- Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via... - December 9th, 2024
- Stem Cells Reveal Secret to Beneficial Proteins for mRNA Therapy - An Interview with Neuroscientist Prof. Dr. Antal Ngrdi - Szegedi Tudomnyegyetem - December 9th, 2024
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021
- Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today - October 28th, 2021
- Team finds way to enhance stem cell therapy for CNS injuries - BioPharma-Reporter.com - October 28th, 2021
- 'Rogue' antibodies found in brains of teens with delusions and paranoia after COVID-19 - Livescience.com - October 28th, 2021
- Traumatic Spinal Cord Injury: An Overview of ... - October 16th, 2021