Pia mater – Wikipedia
By raymumme
Pia mater ( or [1]), often referred to as simply the pia, is the delicate innermost layer of the meninges, the membranes surrounding the brain and spinal cord. Pia mater is medieval Latin meaning "tender mother".[1] The other two meningeal membranes are the dura mater and the arachnoid mater. Both the pia and arachnoid mater are derivatives of the neural crest while the dura is derived from embryonic mesoderm. Pia mater is a thin fibrous tissue that is impermeable to fluid. This allows the pia mater to enclose cerebrospinal fluid. By containing this fluid the pia mater works with the other meningeal layers to protect and cushion the brain. The pia mater allows blood vessels to pass through and nourish the brain. The perivascular space created between blood vessels and pia mater functions as a lymphatic system for the brain. When the pia mater becomes irritated and inflamed the result is meningitis.[2]
Pia mater is the thin, translucent, mesh-like meningeal envelope, spanning nearly the entire surface of the brain. It is absent only at the natural openings between the ventricles, the median aperture, and the lateral aperture. The pia firmly adheres to the surface of the brain and loosely connects to the arachnoid layer.[3] Because of this continuum, the layers are often referred to as the pia arachnoid or leptomeninges. A subarachnoid space exists between the arachnoid layer and the pia, into which the choroid plexus releases and maintains the cerebrospinal fluid (CSF). The subarachnoid space contains trabeculae, or fibrous filaments, that connect and bring stability to the two layers, allowing for the appropriate protection from and movement of the proteins, electrolytes, ions, and glucose contained within the CSF.[4] Romanian biologist Viorel Pais, through recent electron microscopy studies, has demonstrated for the first time in the specialty literature that pia mater is formed by cordocytes and blood vessels.
The thin membrane is composed of fibrous connective tissue, which is covered by a sheet of flat cells impermeable to fluid on its outer surface. A network of blood vessels travels to the brain and spinal cord by interlacing through the pia membrane. These capillaries are responsible for nourishing the brain.[5] This vascular membrane is held together by areolar tissue covered by mesothelial cells from the delicate strands of connective tissue called the arachnoid trabeculae. In the perivascular spaces, the pia mater begins as mesothelial lining on the outer surface, but the cells then fade to be replaced by neuroglia elements.[6]
Although the pia mater is primarily structurally similar throughout, it spans both the spinal cords neural tissue and runs down the fissures of the cerebral cortex in the brain. It is often broken down into two categories, the cranial pia mater (pia mater encephali) and the spinal pia mater (pia mater spinalis).
The section of the pia mater enveloping the brain is known as the cranial pia mater. It is anchored to the brain by the processes of astrocytes, which are glial cells responsible for many functions, including maintenance of the extracellular space. The cranial pia mater joins with the ependyma, which lines the cerebral ventricles to form choroid plexuses that produce cerebrospinal fluid. Together with the other meningeal layers, the function of the pia mater is to protect the central nervous system by containing the cerebrospinal fluid, which cushions the brain and spine.[4]
The cranial pia mater covers the surface of the brain. This layer goes in between the cerebral gyri and cerebellar laminae, folding inward to create the tela chorioidea of the third ventricle and the choroid plexuses of the lateral and third ventricles. At the level of the cerebellum, the pia mater membrane is more fragile due to the length of blood vessels as well as decreased connection to the cerebral cortex.[6]
The spinal pia mater closely follows and encloses the curves of the spinal cord, and is attached to it through a connection to the anterior fissure. The pia mater attaches to the dura mater through 21 pairs of denticulate ligaments that pass through the arachnoid mater and dura mater of the spinal cord. These denticular ligaments help to anchor the spinal cord and prevent side to side movement, providing stability.[7] The membrane in this area is much thicker than the cranial pia mater, due to the two-layer composition of the pia membrane. The outer layer, which is made up of mostly connective tissue, is responsible for this thickness. Between the two layers are spaces which exchange information with the subarachnoid cavity as well as blood vessels. At the point where the pia mater reaches the conus medullaris or medullary cone at the end of the spinal cord, the membrane extends as a thin filament called the filum terminale or terminal filum, contained within the lumbar cistern. This filament eventually blends with the dura mater and extends as far as the coccyx, or tailbone. It then fuses with the periosteum, a membrane found at the surface of all bones, and forms the coccygeal ligament. There it is called the central ligament and assists with movements of the trunk of the body.[6]
In conjunction with the other meningeal membranes, pia mater functions to cover and protect the central nervous system (CNS), to protect the blood vessels and enclose the venous sinuses near the CNS, to contain the cerebrospinal fluid (CSF) and to form partitions with the skull.[8] The CSF, pia mater, and other layers of the meninges work together as a protection device for the brain, with the CSF often referred to as the fourth layer of the meninges.
Cerebrospinal fluid is circulated through the ventricles, cisterns, and subarachnoid space within the brain and spinal cord. About 150mL of CSF is always in circulation, constantly being recycled through the daily production of nearly 500mL of fluid. The CSF is primarily secreted by the choroid plexus; however, about one-third of the CSF is secreted by pia mater and the other ventricular ependymal surfaces (the thin epithelial membrane lining the brain and spinal cord canal) and arachnoidal membranes. The CSF travels from the ventricles and cerebellum through three foramina in the brain, emptying into the cerebrum, and ending its cycle in the venous blood via structures like the arachnoid granulations. The pia spans every surface crevice of the brain other than the foramina to allow the circulation of CSF to continue.[9]
Pia mater allows for the formation of perivascular spaces that help serve as the brains lymphatic system. Blood vessels that penetrate the brain first pass across the surface and then go inwards toward the brain. This direction of flow leads to a layer of the pia mater being carried inwards and loosely adhering to the vessels, leading to the production of a space, namely a perivascular space, between the pia mater and each blood vessel. This is critical because the brain lacks a true lymphatic system. In the remainder of the body, small amounts of protein are able to leak from the parenchymal capillaries through the lymphatic system. In the brain, this ends up in the interstitial space. The protein portions are able to leave through the very permeable pia mater and enter the subarachnoid space in order to flow in the cerebrospinal fluid (CSF), eventually ending up in the cerebral veins. The pia mater serves to create these perivascular spaces to allow passage of certain material, such as fluids, proteins, and even extraneous particulate matter such as dead white blood cells from the blood stream to the CSF, and essentially the brain.[9]
A function of the pia mater is that of the bloodbrain barrier (BBB), which keeps the CSF and brain fluid separate from the blood, allowing limited sodium, chlorine, and potassium through, and absolutely no plasma proteins nor organic molecules. Nearby, the ventricles are lined with the ependyma membrane. The CSF is only kept separate through the pia mater. Due to the ependyma and pia maters high permeability, nearly anything entering the CSF is able to enter the brain interstitial fluid.[9] However, regulation of this permeability is achieved through the abundant amount of astrocyte foot processes which are responsible for connecting the capillaries and the pia mater in a way that helps limit the amount of free diffusion going into the CNS.[10] The permeability of the pia then serves to closely connect the interstitial brain fluid and the CSF and allow them to remain nearly homogenous in terms of composition.[9]
The function of the pia mater is more simply visualized through these ordinary occurrences. This last property is evident in cases of head injury. When the head comes into contact with another object, the brain is protected from the skull due to the similarity in density between these two fluids so that the brain does not simply smash through into the skull, but rather its movement is slowed and stopped by the viscous ability of this fluid. The contrast in permeability between the BBB and pia mater mentioned before is also useful in the application of medicine. Drugs that enter the blood stream can not penetrate and function in the brain, but instead must be administered into the cerebrospinal fluid.[9]
The pia mater also functions to deal with the deformation of the spinal cord under compression. Due to the high elastic modulus of the pia mater, it is able to provide a constraint on the surface of the spinal cord. This constraint stops the elongation of the spinal cord, as well as providing a high strain energy. This high strain energy is useful and responsible for the restoration of the spinal cord to its original shape following a period of decompression.[11]
Ventral root afferents are unmyelinated sensory axons located within the pia mater. These ventral root afferents relay sensory information from the pia mater and allow for the transmission of pain from disc herniation and other spinal injury.[12]
The significant increase in the size of the cerebral hemisphere through evolution has been made possible in part through the evolution of the vascular pia mater, which allows nutrient blood vessels to penetrate deep into the intertwined cerebral matter, providing the necessary nutrients in this larger neural mass. Throughout the course of life on earth, the nervous system of animals has continued to evolve to a more compact and increased organization of neurons and other nervous system cells. This process is most evident in vertebrates and especially mammals in which the increased size of the brain is generally condensed into a smaller space through the presence of sulci or fissures on the surface of the hemisphere divided into gyri allowing more superficies of the cortical grey matter to exist. The development of the meninges and the existence of a defined pia mater was first noted in the vertebrates, and has been more and more significant membrane in the brains of mammals with larger brains.[13]
Meningitis is the inflammation of the pia and arachnoid mater. This is often due to bacteria that have entered the subarachnoid space, but can also be caused by viruses, fungi, as well as non-infectious causes such as certain drugs. It is believed that bacterial meningitis is caused by bacteria that enter the central nervous system through the blood stream. The molecular tools these pathogens would require to cross the meningeal layers and the bloodbrain barrier are not yet well understood. Inside the subarachnoid, bacteria replicate and cause inflammation from released toxins such as hydrogen peroxide (H2O2) . These toxins have been found to damage the mitochondria and produce a large scale immune response. Headache and meningismus are often signs of inflammation relayed via trigeminal sensory nerve fibers within the pia mater. Disabling neuropsychological effects are seen in up to half of bacterial meningitis survivors. Research into how bacteria invade and enter the meningeal layers is the next step in prevention of the progression of meningitis.[14]
A tumor growing from the meninges is referred to as a meningioma. Most meningiomas grow from the arachnoid mater inward applying pressure on the pia mater and therefore the brain or spinal cord. While meningiomas make up 20% of primary brain tumors and 12% of spinal cord tumors, 90% of these tumors are benign. Meningiomas tend to grow slowly and therefore symptoms may arise years after initial tumor formation. The symptoms often include headaches and seizures due to the force the tumor creates on sensory receptors. The treatments available for these tumors include surgery and radiation.[15]
Median sagittal section of brain
Coronal section of inferior horn of lateral ventricle
Diagrammatic representation of a section across the top of the skull, showing the membranes of the brain, etc.
Diagrammatic section of scalp
Ultrastructural diagram of the cerebral cortex (Viorel Pais, 2012)
See the article here:
Pia mater - Wikipedia
- Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via... - December 9th, 2024
- Stem Cells Reveal Secret to Beneficial Proteins for mRNA Therapy - An Interview with Neuroscientist Prof. Dr. Antal Ngrdi - Szegedi Tudomnyegyetem - December 9th, 2024
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021
- Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today - October 28th, 2021
- Team finds way to enhance stem cell therapy for CNS injuries - BioPharma-Reporter.com - October 28th, 2021
- 'Rogue' antibodies found in brains of teens with delusions and paranoia after COVID-19 - Livescience.com - October 28th, 2021