Reprogramming pig cells leads way for new regenerative therapies – National Hog Farmer
By daniellenierenberg
A new approach is paving the way for improved stem cell therapies and regenerative applications using cells from pigs. Led by Wan-Ju Li, a SCRMC researcher and associate professor in the Department of Orthopedics and Rehabilitation and the Department of Biomedical Engineering, this new study published in Scientific Reports offers a viable strategy to enhance the generation of induced pluripotent stem cellsfrom large animal cells and provides researchers with insight into the underlying mechanism controlling the reprogramming efficiency of cells. In turn, this approach will allow researchers to reprogram cells more efficiently into iPSCs which can be used to study regenerative therapies aimed at treating everything from osteoarthritis to heart disease.
While this approach can be applied to regenerative therapies targeting any organ or tissue, Li and his Musculoskeletal Biology and Regenerative Medicine Laboratory study cartilage, so he developed the model by deriving iPSCs from the fibroblast cells of three different breeds of miniature pigs including Wisconsin miniature swine, Yucatan miniature swineand Gttingen minipigs. Fibroblast cells are easily obtained for cellular reprogramming and Li is interested in using these cells to efficiently develop cartilage cells that can be used to help patients experiencing osteoarthritis. But, while his goal for the study was specific, the model has wide-reaching implications.
"This model we created can be used for many applications," says Li. "In successfully developing iPSCs from three different breeds of minipigs, we learned we can take somatic skin cells from these pigs that we programmed ourselves into iPSCs and then inject them back into the same animal to treat the disease. Or we can take the cell that carried the disease gene and put that into the culture dish and use that as a disease model to study disease formation."
Li explained that iPSCs can be created from nearly any type of somatic cell, such as skin or blood cells, that are reprogrammed back into an embryonic-like pluripotent cells. These pluripotent stem cells are the bodys master cells and are, therefore, able to become nearly any cell in the body. Harnessing the power of such a cell and being able to grow these versatile cells in the lab is invaluable to medicine as these cells can be used for the regeneration or repair of damaged tissue and in drug testing to see how medication will impact heart, liver, or other cells within the body.
Through this research, Li and his lab have provided researchers with insight into the underlying mechanism controlling the reprogramming efficiency of iPSCs, allowing researchers to harness to power of iPSCs and develop them more efficiently. Specifically, he discovered that the expression level of the switch/sucrose nonfermentable component BAF60A, which is essentially a protein that can remodel the way DNA is packaged, helps to determine the efficiency of iPSC generation. He also noted that the BAF60A is regulated by STAT3, a transcription factor protein that plays a role in cell growth and death. Through this, Li discovered that the efficiency of iPSC generation is based on the expression level of these proteins and that the expression levels vary among pig breeds.
"While we successfully developed iPSCs and programmed iPSCs from the three different strains of pig, we noticed that some pigs had a higher reprogramming efficiency,"says Li. "So, the second part of our findings, which is significant in biology, is understanding how these differences occur and why."
Li shared that understanding why different pig breeds have varying levels of reprogramming efficiency will directly translate to understanding differences in the effectiveness of iPSC generation between individual humans. In fact, a previous study by Mackey et al., has shown that a person's ethnicity may impact their cell's reprogramming efficiency. So, understanding what mechanisms control cellular reprogramming will be crucial to developing effective protocols of iPSC generation for individualized therapies.
"With this model, we can study musculoskeletal regeneration particularly cartilage regeneration for osteoarthritis patient,"says Li. "But we think the impact is way beyond the application of orthopedics because from now on, anybody on campus who is interested in using the technology we have developed for a minipig model, can reprogram their cells into iPSCs and then these cells and the animal can be used to investigate heart disease, kidney disease, neuronal diseaseor any type of a disease."
Translating this research to improve human health, is deeply important to Li. He has spent much of his career studying novel approaches to regenerate cartilage and bone for orthopedic applications and developing a translational model like this means that science is one step closer to healing more patients using stem cells.
"I feel really touched by the stories people share. You cannot imagine how many emails come in asking me if they can become the first human patient in our future clinical trial,"Li says. "People are in desperate need for something, especially when those people feel the current surgical procedure or intervention is not suitable for them. I have to keep saying, 'wait for another two, three years, maybe we'll be ready for a clinical trial,'but for me, it's time to move on and really do our larger animal studies to fulfill our promise. At least that way, I can fill the gap between the lab and clinical trials as the larger animals must be studied before you go into a clinical trial."
Li's development of a reliable and translational model for the generation of iPSCs in a large animal is critical as it has been a challenge to generate pig iPSCs with efficiency. The reprogramming efficiency of pig cells is relatively low compared to that of human or mouse cells, but large animal studies remain a crucial step in bringing treatments to clinical trials.
Interest in moving these treatments forward has grown and while this study was funded in part by NIH, Li also received support from the Plunkett Family Foundation in Milwaukee through their donation to the UW Stem Cell and Regenerative Medicine Center. After hearing of Li's research, Gwen Plunkett and her daughter Karen visited Li and his lab in 2019 to learn more and were inspired to support research into stem cells for cartilage regeneration.
"Innovation in medicine sparks critical change, for the world and the survival of our species and the Plunkett Family mission is to be a catalyst in stem cell and regenerative medicine research,"says Karen Plunkett. "We supported Jamie Thomson's lab in the early days when federal funding for human stem cell research was restricted. More recently, we continued our commitment to this research by supporting Dr. Wan-Ju Li's stem-cell based approaches for regenerating skeletal tissues, cartilageand bone for orthopedic applications. Additionally, it is personally gratifying to be able to support the SCRMC while my son completes his senior year studying neurobiology at UWMadison.We are happy to be part of the University of Wisconsin family."
Li shared that the donation was profoundly impactful and allowed him to further his goal of using stem cells to help patients struggling with osteoarthritis as well as other joint diseases.
"I want to make sure that our findings in stem cell research can be used to help people,"says Li. "I just feel this internal drive to study this area and I feel good knowing this model carries significant weight in terms of its potential for translational stem cell research and the development of therapeutic treatments."
This research was supported by grants from the National Institutes of Health (R01 AR064803) and the Plunkett Family Foundation. The UW Department of Pathology and Laboratory Medicine and UWCCC (P30 CA014520) and the Small Animal Imaging andRadiotherapy Facility and Flow Cytometry Laboratory, supported by UWCCC (P30 CA014520) also provided facilities and services.
Source: University of Wisconsin-Madison, whichis solely responsible for the information provided, and wholly owns the information. Informa Business Media and all its subsidiaries are not responsiblefor any of the contentcontained in this information asset.
Read the rest here:
Reprogramming pig cells leads way for new regenerative therapies - National Hog Farmer
- Skin science: Latest stories on cosmetics science and formulation - CosmeticsDesign-Asia.com - November 15th, 2024
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 15th, 2024
- Boundary-Pushing Skin Care Company Exoceuticals Garners Beauty Innovation Award For 'Beauty Innovation Technology Of The Year - The Manila Times - November 15th, 2024
- New skin research could help slow signs of ageing - BBC.com - October 21st, 2024
- Human skin map gives 'recipe' to build skin and could help prevent scarring - Medical Xpress - October 21st, 2024
- A new cell therapy company takes its vision from four founders, and its skin from George Church - STAT - September 23rd, 2024
- Women 60+ love this hydrating stem cell-infused moisturizer that's $15 right now - Yahoo Life - September 23rd, 2024
- NKGen Biotech Publishes Phase 1 Interim Analysis Results of SNK02 Allogeneic NK Cell Therapy in Advanced Solid Tumors at the 2024 American Society of... - May 25th, 2024
- FibroGen Announces Presentation of Positive Interim Data from the Phase 1b Study of FG-3246 (FOR46) in Combination with Enzalutamide in Patients with... - May 25th, 2024
- Cogent Biosciences Appoints Cole Pinnow as Chief Commercial Officer - May 25th, 2024
- G1 Therapeutics Announces Upcoming Presentation at the 2024 American Society of Clinical Oncology (ASCO) Meeting - May 25th, 2024
- Updated Phase 1 Clinical Data for SYS-6002 (CRB-701) to be presented at 2024 ASCO Annual Meeting - May 25th, 2024
- Affimed Announces Positive Early Efficacy and Progression Free Survival Results of AFM24-102 Study in EGFR Wild-Type Non-Small Cell Lung Cancer at the... - May 25th, 2024
- SpringWorks Therapeutics Announces Data to be Presented at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Sensei Biotherapeutics Presents Promising Clinical Data from Phase 1 Dose Escalation Study of SNS-101 - May 25th, 2024
- Elicio Therapeutics Announces Preliminary Data from the Ongoing AMPLIFY-7P Phase 1a Study of ELI-002 7P in Patients with mKRAS-driven Solid Tumors at... - May 25th, 2024
- Kronos Bio to Present Clinical Update on Phase 1/2 Trial of KB-0742 at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Coherus Presents Preliminary Results from Phase I Dose Escalation Study of its Anti-chemokine receptor 8 (CCR8) Antibody, CHS-114, at the 2024... - May 25th, 2024
- 3Daughters to Participate in Women’s Health Panel During the 2024 BIO International Convention in San Diego, CA, June 3-6 - May 25th, 2024
- HUTCHMED Highlights Presentations at the 2024 ASCO Annual Meeting - May 25th, 2024
- Myriad Genetics Showcases New Research and Product Innovations Advancing Cancer Care at 2024 ASCO® Annual Meeting - May 25th, 2024
- Lift BioSciences Announces Abstract Publications at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Nicox: 2024 Ordinary Shareholder Meeting to be held on June 28th, 2024 - May 25th, 2024
- Adlai Nortye Ltd. to Present Encouraging Data of the Combination of AN0025 and Definitive Chemoradiotherapy (dCRT) at ASCO 2024 - May 25th, 2024
- Vitamin A could have a key role in both stem cell biology and wound healing: Study - Medical Dialogues - March 10th, 2024
- Cyclerion Strengthens Board of Directors with Experienced Company Builder and Cutting-edge Innovator - December 4th, 2023
- Aptose Appoints Fletcher Payne Chief Business Officer, Expanding his Executive Role - December 4th, 2023
- Opthea to Present at the FLORetina 2023 Congress - December 4th, 2023
- HUTCHMED Highlights Clinical Data to be Presented at 2023 ESMO Asia and ESMO Immuno-Oncology Congresses - December 4th, 2023
- AC Immune Strengthens Management, Appoints Madiha Derouazi as CSO and Christopher Roberts as CFO - December 4th, 2023
- Publication of a transparency notification received from Tolefi SA (Article 14 §1 of the Law of 2 May 2007) - December 4th, 2023
- Annovis Bio Appoints Andrew Walsh as Vice President Finance - December 4th, 2023
- Foghorn Therapeutics Announces Clinical Data from Phase 1 Study of FHD-286, a Novel BRG1/BRM Inhibitor, in Patients with Advanced Hematologic... - December 4th, 2023
- Akari Therapeutics Appoints Experienced Life Sciences Entrepreneur Samir R. Patel, M.D. to Board of Directors - December 4th, 2023
- Ovid Therapeutics to Present Five Abstracts Supporting its Epilepsy Programs at the 77th American Epilepsy Society Annual Meeting (2023) - December 4th, 2023
- Spectral Medical Announces CFO Departure - December 4th, 2023
- Are STEM CELL EXOSOMES the secret to a 'snatched' jawline? Discover the products that influencers are claiming - Daily Mail - November 18th, 2023
- Defence Mechanisms: Four ways your body is protecting you every time you fall sick - indulgexpress - May 16th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, 111SKIN, Nest & More - E! NEWS - May 16th, 2023
- INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - April 5th, 2023
- Skin Regeneration: The Science and How to Boost It - Healthline - March 9th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, U Beauty, Nest & More - E! NEWS - March 1st, 2023
- 7-year-old vows to find a cure for brother in need of bone marrow transplant - WJLA - February 21st, 2023
- World's most radioactive man 'cried blood' as his skin melted in 83-day nightmare - Times Now - February 4th, 2023
- How old are you, really? The answer is written on your face. - National Geographic UK - February 4th, 2023
- Skin: Layers, Structure and Function - Cleveland Clinic - January 27th, 2023
- Human skin | Definition, Layers, Types, & Facts | Britannica - January 27th, 2023
- Skin Disorders: Pictures, Causes, Symptoms, and Treatment - Healthline - January 27th, 2023
- Skin care: 5 tips for healthy skin - Mayo Clinic - January 27th, 2023
- Skin Care and Aging | National Institute on Aging - January 27th, 2023
- Wrinkles - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Dry skin - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Stem cells: a brief history and outlook - Science in the News - January 3rd, 2023
- Still Drinking Green Tea? Doctor Reveals A Healthier Drink With Proven Benefits For Diabetes, Aging, Oxidative Stress, And Cancer - Revyuh - January 3rd, 2023
- RUDN Physician And Russian Scientists Investigate Long-term Effects Of Treating Diabetic Ulcers With Stem Cells - India Education Diary - December 25th, 2022
- The Use of Stem Cells in Burn Wound Healing: A Review - Hindawi - December 1st, 2022
- FACTORFIVE Skincare The Power of Stem Cells for Skin - December 1st, 2022
- Embryonic Stem Cells - The Definitive Guide | Biology Dictionary - December 1st, 2022
- From pro soccer hopeful to hip hop artist with illness and addiction along the way, Tymaz Bagbani releases debut album - Toronto Star - December 1st, 2022
- Stem Cells | The ALS Association - November 22nd, 2022
- What is a stem cell? YourGenome - October 29th, 2022
- Skin Cell - The Definitive Guide | Biology Dictionary - October 29th, 2022
- Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes - October 29th, 2022
- Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com - October 21st, 2022
- Human skin color - Wikipedia - October 13th, 2022
- Mesenchymal Stem Cells | Properties, Process, Functions, & Therapies - October 13th, 2022
- Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus - October 13th, 2022
- Anti-ageing cosmetics: Can they turn back the hands of the clock? - The Sunday Guardian Live - The Sunday Guardian - October 13th, 2022
- Brennand named Elizabeth Mears and House Jameson Professor of Psychiatry - Yale News - October 13th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 13th, 2022
- Last Chance to Get The Collagen-Infused Massage Oil That Moisturizes Skin & Diminishes Cellulite For Less Than $20 - msnNOW - October 13th, 2022
- Addison's Disease Explained: Causes, Symptoms, And Treatments - Health Digest - October 13th, 2022
- Stem Cells Therapy for Autism: Does it Work? - October 5th, 2022
- Stem-like CD8 T cells mediate response of adoptive cell ... - PubMed - October 5th, 2022
- 6 Under Eye Products You Need To Have STAT - Grazia India - October 5th, 2022
- CellResearch Corporation (CRC) to present promising new stem cell products for the treatment of chronic diabetic foot ulcers at the world's premier... - September 27th, 2022
- A glimpse into Indian consumers expectations for cosmetic treatments and consumption insights - The Financial Express - September 27th, 2022
- Tajmeel redefines beauty to give its patients the best results - Gulf News - September 27th, 2022
- Here Is Why You Heal Slower As You Age - Health Digest - September 27th, 2022
- Creating stem cells from minipigs offers promise for improved treatments - University of Wisconsin-Madison - September 19th, 2022