Research supports promise of cell therapy for bowel disease
By NEVAGiles23
Public release date: 28-Feb-2013 [ | E-mail | Share ]
Contact: Karen Richardson krchrdsn@wakehealth.edu 336-716-4453 Wake Forest Baptist Medical Center
WINSTON-SALEM, N.C. Feb. 28, 2013 Researchers at Wake Forest Baptist Medical Center and colleagues have identified a special population of adult stem cells in bone marrow that have the natural ability to migrate to the intestine and produce intestinal cells, suggesting their potential to restore healthy tissue in patients with inflammatory bowel disease (IBD).
Up to 1 million Americans have IBD, which is characterized by frequent diarrhea and abdominal pain. IBD actually refers to two conditions ulcerative colitis and Crohn's disease in which the intestines become red and swollen and develop ulcers, probably as the result of the body having an immune response to its own tissue.
While there is currently no cure for IBD, there are drug therapies aimed at reducing inflammation and preventing the immune response. Because these therapies aren't always effective, scientists hope to use stem cells to develop an injectable cell therapy to treat IBD.
The research findings are reported online in the FASEB Journal (the journal of the Federation of American Societies for Experimental Biology) by senior researcher Graca Almeida-Porada, M.D., Ph.D., professor of regenerative medicine at Wake Forest Baptist's Institute for Regenerative Medicine, and colleagues.
The new research complements a 2012 report by Almeida-Porada's team that identified stem cells in cord blood that are involved in blood vessel formation and also have the ability to migrate to the intestine.
"We've identified two populations of human cells that migrate to the intestine one involved in blood vessel formation and the other that can replenish intestinal cells and modulates inflammation," said Almeida-Porada. "Our hope is that a mixture of these cells could be used as an injectable therapy to treat IBD."
The cells would theoretically induce tissue recovery by contributing to a pool of cells within the intestine. The lining of the intestine has one of the highest cellular turnover rates in the body, with all cell types being renewed weekly from this pool of cells, located in an area of the intestine known as the crypt.
In the current study, the team used cell markers to identify a population of stem cells in human bone marrow with the highest potential to migrate to the intestine and thrive. The cells express high levels of a receptor (ephrin type B) that is involved in tissue repair and wound closure.
See the article here:
Research supports promise of cell therapy for bowel disease