Researchers Convert Astrocytes to Neurons In Vivo to Treat… : Neurology Today – LWW Journals
By daniellenierenberg
Article In Brief
A mouse study shows that select transcription factors to the striatum can effectively and safely convert astrocytes to neurons to treat Huntington's disease.
Delivering two transcription factors to the striatum in a mouse model of Huntington's disease can safely convert astrocytes into neurons with high efficiency, according to a new study in the February 27 issue of Nature Communications.
The neurons grow to and wire up with their targets in the globus pallidus and substantia nigra, and remaining astrocytes proliferate to replace those that have been converted. The treatment extends the lifespan and improves the motor behavior of the mice.
What is exciting about this study is that the authors have clearly made cells that do what they are supposed to do, namely replace dying neurons in existing circuits, said Roger Barker, PhD, professor of clinical neuroscience and honorary consultant in neurology at the University of Cambridge and at Addenbrooke's Hospital, who was not involved in the work. I think the challenge of scaling up this strategy to the human Huntington's disease brain is pretty substantial, but nonetheless, this is an important discovery.
The new study, led by Gong Chen, PhD, builds on discoveries beginning in the mid-2000s showing that a small number of exogenously applied transcription factors could transform skin fibroblasts into stem cells, which could then be further converted to become virtually any cell type. That discovery was quickly followed by advances in direct reprogramming, in which one cell type is directly converted into another, skipping the stem cell intermediate.
Most of that work has taken place in vitro, and most attempts to use the strategy therapeutically have depended on transplantation of stem cells or newly converted cells.
We tried stem cell transplants to the mouse brain 10 years ago, but we couldn't find a lot of functional neurons, said Dr. Chen, professor at Guangdong-Hong Kong-Macau Institute of CNS Regeneration of Jinan University in Guangzhou, China.
It was also clear that anything you do in vitro, you eventually have to transplant, and that didn't seem to be a very promising technology, so I said, Let's try this in vivo, and put transcriptions factors directly into the mouse brain.
Dr. Chen initially tried introducing the transcription factor neurogenin 2, but the efficiency of conversion of astrocytes to neurons was very low, so he turned to the transcription factor NeuroD1, which Dr. Chen's group had previously shown could convert astrocytes into excitatory glutamatergic neurons.
In the current study, in order to generate GABAergic neurons, the team combined NeuroD1 with another transcription factor, D1x2, based on previous work showing its importance for generating GABAergic neurons.
The team packed the genes for the transcription factors into a recombinant adeno-associated virus vector (rAAV 2/5) and used an astrocyte-specific promoter to drive the transgene expression so that it preferentially expresses in astrocytes. They first injected the vector into the normal mouse striatum.
Surprisingly, this strategy worked very well at high efficiency, Dr. Chen said. After seven days, all transfected cells expressed astrocyte markers, indicating a high level of specificity in the vector. Of those cells, 81 percent co-expressed the two transcription factors. By 30 days, 73 percent of the cells expressing the transcription factors now expressed neuronal, rather than astrocytic markers, and were primarily GABAergic in character.
Next, Dr. Chen asked whether the remaining astrocytes could repopulate to replace those lost to conversion. Using immunostaining for astrocytes and neurons, as well as other techniques, the team found that the neuron/astrocyte ratio was unchanged, and that some remaining astrocytes could be found at different stages of cell division, suggesting the process facilitated astrocyte proliferation.
Dr. Chen then turned to the R6/2 mouse, the most common mouse model of Huntington's disease. He treated mice at 2 months of age, just as they began to show motor symptoms
As in the wild-type mice, astrocytes were converted to GABAergic neurons at high efficiency without altering the neuron/astrocyte ratio. The researchers observed similar results in a less-severe HD mouse model as well. Treated mice had only about half the degree of striatal atrophy as untreated mice. The converted neurons still contained aggregated huntingtin protein, but less than in native neurons, and similar to the reduced amount found in astrocytes in the mouse brain.
The real test of any cell therapy in neurodegenerative disease is whether the new cells can link into the existing circuits and provide functional benefit, feats that have been hard to achieve with transplanted fetal cells or stem cells.
Examining striatal slices from the treated mice, Dr. Chen found that the converted neurons displayed electrical properties largely identical to those of normal neurons, including resting potential, action potential threshold, firing amplitude, and firing frequency. They integrated into local circuits and behaved similarly to the native neurons around them. By tracking a marker contained in the AAV gene construct, they showed that converted neurons projected axons to the two basal ganglia targets of medium spiny neurons in the striatum, the globus pallidus and the substantia nigra.
Finally, Dr. Chen found that stride length and travel distance were both significantly improved in treated mice, though still falling below those of wild-type mice, and lifespan was significantly extended.
There were no hints of tumors in the mice, Dr. Chen noted. He suggested that in situ conversion is likely intrinsically safer in this regard than using stem cell-derived neurons, since a proliferative astrocyte is being converted into a non-proliferative neuron, with no residual pool of unconverted and potentially tumorigenic stem cells. We are actually reducing the tumor risk, he said.
Why the converted neurons developed appropriate neuronal connections is an important unanswered question, Dr. Chen said. He suggested there were two important factorsfirst, the astrocytes from which they arose are likely developmentally related to neighboring neurons, and thus may express similar position markers that help guide them to the right targets, just like the native neurons. Second, those remaining neurons may also provide guide tracks for the newly growing axons.
This conversion technique is not limited to Huntington's disease, he stressed, noting that his team last year published a paper showing promise in ischemic stroke, and work is underway to test its potential in Alzheimer's disease, Parkinson's disease, spinal cord injury, and ALS. He is also moving on to testing in non-human primates, setting the stage for eventual human trials.
I think eventually we will want to correct the Huntington's mutation as well, Dr. Chen said, for instance by using CRISPR, but he pointed out that while that strategy can repair diseased neurons, it cannot make new ones, like astrocyte-to-neuron conversion can.
This study is really elegantly done, commented Veronica Garcia, PhD, who has studied astrocytes derived from induced pluripotent stem cells from Huntington's disease patients as a postdoctoral scientist working with Clive Svendsen, PhD, in the Regenerative Medicine Institute at Cedars-Sinai Medical Center in Los Angeles.
The conversion efficiency is similar between wild-type and disease models, suggesting that the disease process is not interfering with the conversion, she said.
Astrocyte depletion does not seem to be a problem, at least in the short term, but Dr. Garcia noted there is a limit on the number of divisions astrocytes appear able to undergo, after which they lose the ability to proliferate. That may be a problem for chronic treatment, she suggested. Nonetheless, these results really look promising for therapeutic development.
The concept of trying to reprogram cells in situ to take on the phenotype of the cells that are lost is not new, commented Dr. Barker, but being able to do it with any degree of efficiency, to make enough cells to make a significant difference, has been problematic. For that reason, and because the cells grow to their target sites and make connections, these results are surprising.
A major hurdle for clinical trials, he noted, will be scaling up to the human striatum, which has approximately 100 times the volume of that in the mouse. Delivering the vector to such a large volume will be a significant challenge, he said, along with determining whether this approach will really work in a disease that affects many different brain structures such as in HD.
Dr. Chen is co-founder of NeuExcell Therapeutics Inc, which will develop clinical trials in the future. Drs. Barker and Garcia disclosed no conflicts.
Read the original post:
Researchers Convert Astrocytes to Neurons In Vivo to Treat... : Neurology Today - LWW Journals
- Exploring the Regenerative Mechanisms Behind Spinal Cord Injury Repair - Genetic Engineering & Biotechnology News - January 14th, 2025
- Electrically Active Transplantable Material Could Treat Brain and Spinal Cord Injuries - HospiMedica - January 14th, 2025
- Unlocking Spinal Cord Regeneration: Astrocytes Lead the Way - Neuroscience News - January 14th, 2025
- Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via... - December 9th, 2024
- Stem Cells Reveal Secret to Beneficial Proteins for mRNA Therapy - An Interview with Neuroscientist Prof. Dr. Antal Ngrdi - Szegedi Tudomnyegyetem - December 9th, 2024
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021