Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming

By LizaAVILA

Contact Information

Available for logged-in reporters only

Newswise In a groundbreaking study that provides scientists with a critical new understanding of stem cell development and its role in disease, UCLA researchers at the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research led by Dr. Kathrin Plath, professor of biological chemistry, have established a first-of-its-kind methodology that defines the unique stages by which specialized cells are reprogrammed into stem cells that resemble those found in the embryo.

The study was published online ahead of print in the journal Cell.

Induced pluripotent stem cells (known as iPSCs) are similar to human embryonic stem cells in that both cell types have the unique ability to self-renew and have the flexibility to become any cell in the human body. iPSC cells, however, are generated by reprogramming skin or blood cells and do not require an embryo.

Reprogramming is a long process (about one to two weeks) and largely inefficient, with typically less than one percent of the primary skin or blood cells successfully completing the journey to becoming an iPSC. The exact stages a cell goes through during the reprogramming process are also not well understood. This knowledge is important, as iPSCs hold great promise in the field of regenerative medicine, as they can provide a single source of patient-specific cells to replace those lost to injury or disease. They can also be used to create novel disease models from which new drugs and therapies can be developed.

This research has broad impact, because by deepening our understanding of cell reprogramming we have the potential to improve disease modeling and the generation of better sources of patient-specific specialized cells suitable for replacement therapy, said Plath. This can ultimately benefit patients with new and better treatments for a wide range of diseases.

Drs. Vincent Pasque and Jason Tchieu, postdoctoral fellows in the lab of Dr. Plath and co-first authors of the study, developed a roadmap of the reprogramming process using detailed time-course analyses. They induced the reprogramming of skin cells into iPSC, then observed and analyzed on a daily basis or every other day the process of transformation at the single-cell level. The data were collected and recorded over a period of up to two weeks.

Plaths team found that the changes that happen in cells during reprogramming occur in a sequential stage-by-stage manner, and that importantly, the stages were the same across all the different reprogramming systems and different cell types analyzed.

The exact stage of reprogramming of any cell can now be determined, said Pasque. This study signals a big change in thinking, because it provides simple and efficient tools for scientists to study stem cell creation in a stage-by-stage manner. Most studies to date ignore the stages of reprogramming, but we can now seek to better understand the entire process on both a macro and micro level.

Link:
Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming



categoriaUncategorized commentoComments Off on Scientists Develop Pioneering Method to Define Stages of Stem Cell Reprogramming | dataJanuary 6th, 2015

About...

This author published 890 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024