Scientists edit disease-causing gene mutation in human embryos – WENY-TV
By Sykes24Tracey
By Jacqueline Howard CNN
(CNN) -- Scientists are getting one step closer to snipping inherited genetic diseases out of human offspring using a gene-editing technique called CRISPR.
For the first time, scientists said, they corrected a gene mutation linked to inherited heart conditions in human embryos using the approach. A study demonstrating the technique was published in the journal Nature on Wednesday (PDF).
Last week, the MIT Technology Review released the first news of this scientific feat, describing the research as the first-known attempt at creating genetically modified human embryos in the United States.
However, Juan Carlos Izpisua Belmonte, a co-author of the study, described it as the first in the world to demonstrate gene-editing to be safe, accurate and efficient in correcting a pathogenic gene mutation in human embryos. Previous attempts by Chinese researchers were unsuccessful at achieving this without safety concerns.
"This is the first that has been demonstrated as safe and working," said Belmonte, a professor at the Salk Institute for Biological Studies' gene expression laboratory in La Jolla, California.
"All cells of the embryo were corrected," he said. "It seems to be working from these samples that we have chosen, but we need to do much more basic research with many other genes."
The study was a collaboration between the Salk Institute, the Oregon Health & Science University in Portland and Korea's Institute for Basic Science.
Scientists estimate that more than 10,000 human diseases may result from mutations to a single gene occurring in all cells of the body, according to the World Health Organization.
Cutting and correcting gene mutations
The study used 75 human zygotes in which the father carried a mutation on the MYBPC3 gene, Belmonte said. The eggs used to produce the zygotes did not carry that gene mutation. The researchers noted that they received informed consent from the donors of the eggs, sperm and embryos used in the study.
The goal was to correct a type of inherited heart condition. A mutation called MYBPC3 is associated with inherited heart conditions, including left ventricular noncompaction, familial dilated cardiomyopathy and familial hypertrophic cardiomyopathy, which affects an estimated one in 500 people worldwide.
Hypertrophic cardiomyopathy also is thought to be the most common inherited or genetic heart disease in the US, according to the Centers for Disease Control and Prevention.
In a lab dish, the researchers used CRISPR, a gene-editing technique, to remove the harmful MYBPC3 mutation from the human zygotes. Then, the zygotes' own DNA-repair mechanism replaced what was cut out with a copy of a MYBPC3 gene from the mother, which did not carry a mutation, Belmonte said.
"A male research subject known to be heterozygous for this gene mutation was recruited for the study, as were several healthy young egg donors," Dr. Paula Amato, an obstetrician-gynecologist at Oregon Health & Science University, said Tuesday. She was a co-author of the study.
"CRISPR was introduced at the time of sperm injection," she said. "Then, DNA repair of the embryos was assessed."
The researchers found that about 72% of zygotes were properly and safely corrected on the MYBPC3 gene, Belmonte said.
This method significantly differed from studies in which scientists used the CRISPR tool to manually replace what was cut out with whatever the scientists desired.
Researchers in China were the first to reveal attempts to modify genes in human embryos using CRISPR. Three separate studies were published in scientific journals describing Chinese experiments on gene editing in human embryos.
"The previous human studies done in China had very small numbers, and one of them used abnormal embryos," Amato said. "So we think this is the first, largest study from which you could draw some reasonable conclusions."
Some gene-editing attempts in human embryos have been problematic, resulting in an issue called mosaicism, in which the corrections made in one gene failed to replicate once that cell divided into two cells, those two cells divided into four cells and so on.
"So when the baby is born, all the cells do not have the mutation anymore. ... This study, it shows that we can correct the embryo and then, after the division, all the cells are corrected, so there's not what we call mosaicism," said Belmonte, who is also a member of the National Academies of Sciences, Engineering and Medicine's committee on human gene editing.
This year, the academies published a report on human genome editing that addressed potential applications of the technology, including the possible prevention or treatment of inherited diseases or conditions.
The future of gene editing
Though the researchers have expressed enthusiasm around their new study, they also noted that the findings must be replicated in followup research before this gene-editing approach can move forward to clinical trials.
"The fact that it is, apparently, a new and poorly understood mechanism and it is not the now standard CRISPR 'cut and replace' method adds to the time needed for research into its safety and effectiveness," said Hank Greely, professor of law and genetics at Stanford University, who was not involved in the new study.
Yet future research can come with some political challenges, Amato said.
"First of all, there are regulations regarding use of federal funds for embryo research, so the (US National Institutes of Health) does not currently support embryo research, so that's one barrier. The other barrier is, the (US Food and Drug Administration) is prohibited from considering any clinical trials related to germline genetic modification," she said.
In this new study the embryos were only allowed to mature to day three after fertilization before they were disaggregated, or isolated into various components, for further analysis.
In the far-off future, a clinical trial could include transplanting corrected embryos into a uterus with the goal of establishing pregnancy and then monitoring the embryos as they develop into children.
Still, "it is way too early to contemplate implanting the edited embryos for the purpose of actually establishing a pregnancy," said Dana Carroll, a professor of biochemistry at the University of Utah who was not involved in the new study but has used CRISPR in his own research.
"The genome editing tools are currently not sufficiently efficient and specific to be reliable, and regulatory and oversight processes have not been established," Carroll said, adding that the work on the new study was "well-done" and "well-presented."
"The authors have made an important discovery regarding the repair of CRISPR-induced DNA breaks in human eggs just at the time of fertilization," he said.
"This information will help to guide ongoing research, and it demonstrates that research on early-stage human embryos will be necessary to establish safe and effective procedures in the long run," he said. "There is still a lot of work to do to understand repair processes in very early embryos and to optimize the use of the CRISPR reagents, but this study makes a valuable contribution."
Some CRISPR critics have argued that gene editing may give way to eugenics and to allowing embryos to be edited with certain features in order to develop so-called designer babies.
However, the researchers wrote in their study that they hope CRISPR could be considered as an alternative option to preimplantation genetic diagnosis, also known as PGD, for couples at risk of passing on an inherited disease.
'This opens up the possibility for those embryos'
PGD, developed about a quarter-century ago, is a genetic testing procedure typically conducted after in vitro fertilization to diagnose a genetic disease or condition in an embryo before it is implanted.
Since the human genome contains two copies of each gene -- paternal and maternal alleles, or variant forms of genes -- a mutation affecting only one allele is called heterozygous.
When only one parent carries a heterozygous mutation on a gene, about half of the embryos from that parent should be mutation-free while the others would have the mutation. Selectively, the parents' doctor would chose the healthy embryos to be implanted and discard the embryos with the mutations, Belmonte said.
Sometimes, "a couple that wants to have a baby and they have a mutation, they may not have enough embryos to choose from," he said. This is when CRISPR can come in.
"This technology, independent of the embryos that are there, it would go on and correct all of them. ... This opens up the possibility for those embryos," he said. "That's important because after the first implantation, if it doesn't work, you can do it again."
The researchers wrote in their study, "PGD may be a viable option for heterozygous couples at risk of producing affected offspring. In cases when only one parent carries a heterozygous mutation, 50% of embryos should be mutant. In contrast, targeted gene correction can potentially rescue a substantial portion of mutant human embryos, thus increasing the number of embryos available for transfer."
Nonetheless, using CRISPR in that way remains a long way off.
Shoukhrat Mitalipov, director of the Oregon Health & Science University's Center for Embryonic Cell and Gene Therapy, helped lead the new study. In 2013, Mitalipov and his colleagues reported the first success in cloning human stem cells, reprogramming human skin cells back to their embryonic state. In 2007, a research team led by Mitalipov announced that they created the first cloned monkey embryo and extracted stem cells from it.
Now, when it comes to using CRISPR to correct gene mutations in embryos, Mitalipov said Tuesday, "We've done some ground work. ... There is still a long road ahead, and it's unclear at this point when we will be allowed to move on."
TM & 2017 Cable News Network, Inc., a Time Warner Company. All rights reserved.
See more here:
Scientists edit disease-causing gene mutation in human embryos - WENY-TV
- Skip the Botox and Try One of These Growth Factor Serums Instead - ELLE - January 14th, 2025
- Are Plant-Based Stem Cells the New Botox? This Derm Thinks So - The Daily Beast - January 5th, 2025
- Skin science: Latest stories on cosmetics science and formulation - CosmeticsDesign-Asia.com - November 15th, 2024
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 15th, 2024
- Boundary-Pushing Skin Care Company Exoceuticals Garners Beauty Innovation Award For 'Beauty Innovation Technology Of The Year - The Manila Times - November 15th, 2024
- New skin research could help slow signs of ageing - BBC.com - October 21st, 2024
- Human skin map gives 'recipe' to build skin and could help prevent scarring - Medical Xpress - October 21st, 2024
- A new cell therapy company takes its vision from four founders, and its skin from George Church - STAT - September 23rd, 2024
- Women 60+ love this hydrating stem cell-infused moisturizer that's $15 right now - Yahoo Life - September 23rd, 2024
- NKGen Biotech Publishes Phase 1 Interim Analysis Results of SNK02 Allogeneic NK Cell Therapy in Advanced Solid Tumors at the 2024 American Society of... - May 25th, 2024
- FibroGen Announces Presentation of Positive Interim Data from the Phase 1b Study of FG-3246 (FOR46) in Combination with Enzalutamide in Patients with... - May 25th, 2024
- Cogent Biosciences Appoints Cole Pinnow as Chief Commercial Officer - May 25th, 2024
- G1 Therapeutics Announces Upcoming Presentation at the 2024 American Society of Clinical Oncology (ASCO) Meeting - May 25th, 2024
- Updated Phase 1 Clinical Data for SYS-6002 (CRB-701) to be presented at 2024 ASCO Annual Meeting - May 25th, 2024
- Affimed Announces Positive Early Efficacy and Progression Free Survival Results of AFM24-102 Study in EGFR Wild-Type Non-Small Cell Lung Cancer at the... - May 25th, 2024
- SpringWorks Therapeutics Announces Data to be Presented at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Sensei Biotherapeutics Presents Promising Clinical Data from Phase 1 Dose Escalation Study of SNS-101 - May 25th, 2024
- Elicio Therapeutics Announces Preliminary Data from the Ongoing AMPLIFY-7P Phase 1a Study of ELI-002 7P in Patients with mKRAS-driven Solid Tumors at... - May 25th, 2024
- Kronos Bio to Present Clinical Update on Phase 1/2 Trial of KB-0742 at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Coherus Presents Preliminary Results from Phase I Dose Escalation Study of its Anti-chemokine receptor 8 (CCR8) Antibody, CHS-114, at the 2024... - May 25th, 2024
- 3Daughters to Participate in Women’s Health Panel During the 2024 BIO International Convention in San Diego, CA, June 3-6 - May 25th, 2024
- HUTCHMED Highlights Presentations at the 2024 ASCO Annual Meeting - May 25th, 2024
- Myriad Genetics Showcases New Research and Product Innovations Advancing Cancer Care at 2024 ASCO® Annual Meeting - May 25th, 2024
- Lift BioSciences Announces Abstract Publications at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Nicox: 2024 Ordinary Shareholder Meeting to be held on June 28th, 2024 - May 25th, 2024
- Adlai Nortye Ltd. to Present Encouraging Data of the Combination of AN0025 and Definitive Chemoradiotherapy (dCRT) at ASCO 2024 - May 25th, 2024
- Vitamin A could have a key role in both stem cell biology and wound healing: Study - Medical Dialogues - March 10th, 2024
- Cyclerion Strengthens Board of Directors with Experienced Company Builder and Cutting-edge Innovator - December 4th, 2023
- Aptose Appoints Fletcher Payne Chief Business Officer, Expanding his Executive Role - December 4th, 2023
- Opthea to Present at the FLORetina 2023 Congress - December 4th, 2023
- HUTCHMED Highlights Clinical Data to be Presented at 2023 ESMO Asia and ESMO Immuno-Oncology Congresses - December 4th, 2023
- AC Immune Strengthens Management, Appoints Madiha Derouazi as CSO and Christopher Roberts as CFO - December 4th, 2023
- Publication of a transparency notification received from Tolefi SA (Article 14 §1 of the Law of 2 May 2007) - December 4th, 2023
- Annovis Bio Appoints Andrew Walsh as Vice President Finance - December 4th, 2023
- Foghorn Therapeutics Announces Clinical Data from Phase 1 Study of FHD-286, a Novel BRG1/BRM Inhibitor, in Patients with Advanced Hematologic... - December 4th, 2023
- Akari Therapeutics Appoints Experienced Life Sciences Entrepreneur Samir R. Patel, M.D. to Board of Directors - December 4th, 2023
- Ovid Therapeutics to Present Five Abstracts Supporting its Epilepsy Programs at the 77th American Epilepsy Society Annual Meeting (2023) - December 4th, 2023
- Spectral Medical Announces CFO Departure - December 4th, 2023
- Are STEM CELL EXOSOMES the secret to a 'snatched' jawline? Discover the products that influencers are claiming - Daily Mail - November 18th, 2023
- Defence Mechanisms: Four ways your body is protecting you every time you fall sick - indulgexpress - May 16th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, 111SKIN, Nest & More - E! NEWS - May 16th, 2023
- INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - April 5th, 2023
- Skin Regeneration: The Science and How to Boost It - Healthline - March 9th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, U Beauty, Nest & More - E! NEWS - March 1st, 2023
- 7-year-old vows to find a cure for brother in need of bone marrow transplant - WJLA - February 21st, 2023
- World's most radioactive man 'cried blood' as his skin melted in 83-day nightmare - Times Now - February 4th, 2023
- How old are you, really? The answer is written on your face. - National Geographic UK - February 4th, 2023
- Skin: Layers, Structure and Function - Cleveland Clinic - January 27th, 2023
- Human skin | Definition, Layers, Types, & Facts | Britannica - January 27th, 2023
- Skin Disorders: Pictures, Causes, Symptoms, and Treatment - Healthline - January 27th, 2023
- Skin care: 5 tips for healthy skin - Mayo Clinic - January 27th, 2023
- Skin Care and Aging | National Institute on Aging - January 27th, 2023
- Wrinkles - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Dry skin - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Stem cells: a brief history and outlook - Science in the News - January 3rd, 2023
- Still Drinking Green Tea? Doctor Reveals A Healthier Drink With Proven Benefits For Diabetes, Aging, Oxidative Stress, And Cancer - Revyuh - January 3rd, 2023
- RUDN Physician And Russian Scientists Investigate Long-term Effects Of Treating Diabetic Ulcers With Stem Cells - India Education Diary - December 25th, 2022
- The Use of Stem Cells in Burn Wound Healing: A Review - Hindawi - December 1st, 2022
- FACTORFIVE Skincare The Power of Stem Cells for Skin - December 1st, 2022
- Embryonic Stem Cells - The Definitive Guide | Biology Dictionary - December 1st, 2022
- From pro soccer hopeful to hip hop artist with illness and addiction along the way, Tymaz Bagbani releases debut album - Toronto Star - December 1st, 2022
- Stem Cells | The ALS Association - November 22nd, 2022
- What is a stem cell? YourGenome - October 29th, 2022
- Skin Cell - The Definitive Guide | Biology Dictionary - October 29th, 2022
- Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes - October 29th, 2022
- Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com - October 21st, 2022
- Human skin color - Wikipedia - October 13th, 2022
- Mesenchymal Stem Cells | Properties, Process, Functions, & Therapies - October 13th, 2022
- Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus - October 13th, 2022
- Anti-ageing cosmetics: Can they turn back the hands of the clock? - The Sunday Guardian Live - The Sunday Guardian - October 13th, 2022
- Brennand named Elizabeth Mears and House Jameson Professor of Psychiatry - Yale News - October 13th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 13th, 2022
- Last Chance to Get The Collagen-Infused Massage Oil That Moisturizes Skin & Diminishes Cellulite For Less Than $20 - msnNOW - October 13th, 2022
- Addison's Disease Explained: Causes, Symptoms, And Treatments - Health Digest - October 13th, 2022
- Stem Cells Therapy for Autism: Does it Work? - October 5th, 2022
- Stem-like CD8 T cells mediate response of adoptive cell ... - PubMed - October 5th, 2022
- 6 Under Eye Products You Need To Have STAT - Grazia India - October 5th, 2022
- CellResearch Corporation (CRC) to present promising new stem cell products for the treatment of chronic diabetic foot ulcers at the world's premier... - September 27th, 2022
- Reprogramming pig cells leads way for new regenerative therapies - National Hog Farmer - September 27th, 2022
- A glimpse into Indian consumers expectations for cosmetic treatments and consumption insights - The Financial Express - September 27th, 2022