Scientists Unlock the Secrets of Cellular Aging: What Happens After You Turn 70? – SciTechDaily
By daniellenierenberg
Researchers have revealed the cellular mysteries behind aging.
A new explanation for aging has been developed by researchers who have shown that genetic abnormalities that develop gradually over a lifetime cause substantial alterations in how blood is generated beyond the age of 70.
According to recent research, the drastic reduction in blood production beyond the age of 70 is likely caused by genetic alterations that steadily accumulate in blood stem cells throughout life.
Researchers from the Wellcome Sanger Institute, the Wellcome-MRC Cambridge Stem Cell Institute, and others have published a study that offers a new theory of aging in the journal Nature.
Somatic mutations, or alterations to the genetic code, occur in all human cells during the course of a lifetime. Aging is most likely caused by the accumulation of numerous sorts of damage to our cells over time, with one hypothesis proposing that the accumulation of somatic mutations causes cells to gradually lose functional reserve. However, it is still unknown how such slow-building molecular damage may result in the rapid decline in organ performance around the age of 70.
The Wellcome Sanger Institute, the Cambridge Stem Cell Institute, and collaborators examined the production of blood cells from the bone marrow in 10 people ranging in age from newborns to the elderly in order to better understand how the body ages.
3,579 blood stem cells had their whole genomes sequenced, allowing researchers to determine every somatic mutation present in each cell. Using this information, the team was able to create family trees of each persons blood stem cells, providing for the first time an impartial perspective of the connections between blood cells and how these ties develop over the course of a persons lifetime.
After the age of 70 years, the researchers discovered that these family trees underwent significant change. In adults under the age of 65, 20,000 to 200,000 stem cells contributed roughly equal amounts to the creation of blood cells. In contrast, blood production was exceedingly uneven in those above the age of 70.
In every elderly person investigated, a small number of enlarged stem cell clonesas few as 10 to 20contributed as much as half of the total blood output. Because of an uncommon class of somatic mutations known as driver mutations, these highly active stem cells have gradually increased in number during that persons life.
These findings led the team to propose a model in which age-associated changes in blood production come from somatic mutations causing selfish stem cells to dominate the bone marrow in the elderly. This model, with the steady introduction of driver mutations that cause the growth of functionally altered clones over decades, explains the dramatic and inevitable shift to reduced diversity of blood cell populations after the age of 70. Which clones become dominant varies from person to person, and so the model also explains the variation seen in disease risk and other characteristics in older adults. A second study, also published in Nature, explores how different individual driver mutations affect cell growth rates over time.
Dr. Emily Mitchell, Haematology Registrar at Addenbrookes Hospital, a Ph.D. student at the Wellcome Sanger Institute, and lead researcher on the study, said: Our findings show that the diversity of blood stem cells is lost in older age due to positive selection of faster-growing clones with driver mutations.
These clones outcompete the slower-growing ones. In many cases this increased fitness at the stem cell level likely comes at a cost their ability to produce functional mature blood cells is impaired, so explaining the observed age-related loss of function in the blood system.
Dr. Elisa Laurenti, Assistant Professor and Wellcome Royal Society Sir Henry Dale Fellow at the Wellcome-MRC Cambridge Stem Cell Institute at the University of Cambridge, and joint senior researcher on this study, said: Factors such as chronic inflammation, smoking, infection, and chemotherapy cause earlier growth of clones with cancer-driving mutations. We predict that these factors also bring forward the decline in blood stem cell diversity associated with aging. It is possible that there are factors that might slow this process down, too. We now have the exciting task of figuring out how these newly discovered mutations affect blood function in the elderly, so we can learn how to minimize disease risk and promote healthy aging.
Dr. Peter Campbell, Head of the Cancer, Ageing and Somatic Mutation Programme at the Wellcome Sanger Institute, and senior researcher on the study said: Weve shown, for the first time, how steadily accumulating mutations throughout life lead to a catastrophic and inevitable change in blood cell populations after the age of 70. What is super exciting about this model is that it may well apply to other organ systems too. We see these selfish clones with driver mutations expanding with age in many other tissues of the body we know this can increase cancer risk, but it could also be contributing to other functional changes associated with aging.
References: Clonal dynamics of haematopoiesis across the human lifespan by Emily Mitchell, Michael Spencer Chapman, Nicholas Williams, Kevin J. Dawson, Nicole Mende, Emily F. Calderbank, Hyunchul Jung, Thomas Mitchell, Tim H. H. Coorens, David H. Spencer, Heather Machado, Henry Lee-Six, Megan Davies, Daniel Hayler, Margarete A. Fabre, Krishnaa Mahbubani, Federico Abascal, Alex Cagan, George S. Vassiliou, Joanna Baxter, Inigo Martincorena, Michael R. Stratton, David G. Kent, Krishna Chatterjee, Kourosh Saeb Parsy, Anthony R. Green, Jyoti Nangalia, Elisa Laurenti, and Peter J. Campbell, 1 June 2022, Nature.DOI: 10.1038/s41586-022-04786-y
The longitudinal dynamics and natural history of clonal haematopoiesis by Margarete A. Fabre, Jos Guilherme de Almeida, Edoardo Fiorillo, Emily Mitchell, Aristi Damaskou, Justyna Rak, Valeria Orr, Michele Marongiu, Michael Spencer Chapman, M. S. Vijayabaskar, Joanna Baxter, Claire Hardy, Federico Abascal, Nicholas Williams, Jyoti Nangalia, Iigo Martincorena, Peter J. Campbell, Eoin F. McKinney, Francesco Cucca, Moritz Gerstung, and George S. Vassiliou, 1 June 2022, Nature.DOI: 10.1038/s41586-022-04785-z
The study was funded by Wellcome and the William B Harrison Foundation.
Read the original here:
Scientists Unlock the Secrets of Cellular Aging: What Happens After You Turn 70? - SciTechDaily
- Four-year-old donates stem cells to save her baby sister from blood cancer in Odisha - The Hindu - February 20th, 2025
- Effect of pre-transplant cytoreductive therapy on the outcomes of patients with MDS or secondary AML evolving from MDS undergoing allo-HSCT: a... - February 20th, 2025
- A heart disease trigger that lurks inside bone marrow - Harvard Health - February 20th, 2025
- 4-year-old donates stem cells to save sister as SCB performs first-of-a-kind bone marrow transplant in Odisha - OTV News - February 20th, 2025
- KU Cancer Center recognized for transplant that saved 1-year-olds life - WDAF FOX4 Kansas City - February 20th, 2025
- Orca-T With RIC Is Safe in Advanced Hematologic Malignancies - OncLive - February 20th, 2025
- SCB conducts Odisha's first bone marrow transplant on two-year-old - The New Indian Express - February 20th, 2025
- Bahrain's pioneering use of sickle cell disease treatment hailed by medical experts - The National - February 20th, 2025
- Cancer survivor is the first monumental bone marrow transplant patient in Baton Rouge in 8 years - NOLA.com - February 11th, 2025
- Autologous Cell Therapy Market to Hit Valuation of US$ 44.55 Billion By 2033 | Astute Analytica - GlobeNewswire - February 11th, 2025
- Nanoparticle that cuts middlemen could improve stem cell therapy - Futurity: Research News - January 31st, 2025
- GATA2 mutated allele specific expression is associated with a hyporesponsive state of HSC in GATA2 deficiency syndrome - Nature.com - January 31st, 2025
- Coordinated immune networks in leukemia bone marrow microenvironments distinguish response to cellular therapy - Science - January 31st, 2025
- How the bone marrow microbiome responds to immunotherapy - Chemical & Engineering News - January 31st, 2025
- My Experience With Stem Cell Therapy: Snake Oil or Silver Bullet? - GearJunkie - January 31st, 2025
- Hematopoietic Stem Cell Transplantation - StatPearls - NCBI ... - January 22nd, 2025
- Doctors retrieve stem cells from 20-month-old to treat thalassaemic sister - The Times of India - January 22nd, 2025
- YolTech Therapeutics to Initiate a Clinical Trial for YOLT-204, a First-in-Class Bone Marrow-Targeted In Vivo Gene Editing Therapy for -Thalassemia -... - January 22nd, 2025
- School of Medicine professor receives grant to study improved cancer treatments - Mercer University - January 14th, 2025
- 1st stem cell therapy, new HIV drug approved - ecns - January 5th, 2025
- Suppression of thrombospondin-1mediated inflammaging prolongs hematopoietic health span - Science - January 5th, 2025
- A pilot raced through the airport to surprise an old friend: the woman who saved his life - CNN - December 27th, 2024
- Types of Stem Cell and Bone Marrow Transplants - December 27th, 2024
- Explained: What is mesenchymal stem cell therapy? - Drug Discovery News - December 18th, 2024
- Stem Cell Transplants Offer New Hope for Saving the Worlds Corals - Technology Networks - December 18th, 2024
- Scientists Present Research on Novel Cancer Therapies at ASH - City of Hope - December 18th, 2024
- Navigating CAR-T cell therapy long-term complications - Nature.com - December 18th, 2024
- High-dose chemotherapy followed by autologous stem cell transplant ineffective for patients with mantle cell lymphoma - News-Medical.Net - December 18th, 2024
- Stem Cell Therapy Market Is Expected To Reach Revenue Of - GlobeNewswire - December 18th, 2024
- The Importance of Cellular Therapy in the Clinical Case of a Young Man With a Challenging Precursor B-cell Lymphoblastic Leukemia - Cureus - December 18th, 2024
- A search for the perfect match, Apex six year old in need of donor - CBS17.com - December 18th, 2024
- New insights into survival of breast cancer cells in the bone marrow - News-Medical.Net - December 9th, 2024
- Cellular trafficking and fate mapping of cells within the nervous system after in utero hematopoietic cell transplantation - Nature.com - December 9th, 2024
- Saving lives, one stem cell at a time - Texas A&M The Battalion - December 9th, 2024
- Turn Biotechnologies Announces Landmark Study to Assess Effectiveness of ERA Therapy in Restoring Bone Marrow - PR Newswire UK - December 9th, 2024
- Orca Bio Presents Three-Year Survival Data with Orca-T in Patients with Hematological Malignancies at the 66th ASH Annual Meeting - Yahoo Finance - December 9th, 2024
- You are the match. How UNC student honored her late grandfather with life-saving effort - Raleigh News & Observer - November 29th, 2024
- scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes... - November 29th, 2024
- Atlanta pilot with an aggressive cancer finds lifesaving help from a stranger and a simple test - The Atlanta Journal Constitution - November 29th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 29th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
