Somatic SNAFUCan a Few Mutant Microglia Cause Neurodegenerative Disease? – Alzforum
By Sykes24Tracey
01 Sep 2017
A paper in the September 1 Nature claims a cadre of rogue microglia are all it takes to orchestrate neurodegeneration. Researchers led by Frederic Geissmann and Omar Abdel-Wahab of Memorial Sloan Kettering Cancer Center in New York, and Marco Prinz of the University of Freiburg in Germany, induced a somatic mutation in about 10 percent of microglia that switched on ERK kinase signaling. The mice later developed a severe neurodegenerative disease that paralyzed them. The researchers determined that damaging inflammation caused by the mutated microglia was likely to blame. The findings raise the possibility that similar somatic mutations in people are responsible for a rare neurodegenerative disease that occurs inchildren.
This is a great paper for many reasons, commented Bart De Strooper of the Dementia Research Institute in the U.K. I am particularly excited about the concept of acquired genetic mosaicism as a cause of neurodegenerative disorder. The paper also shows that microglia mutations can be directly causative inneurodegeneration.
Most famous for their role in causing cancer, somatic mutations can spontaneously arise in any cell, sometimes giving it a proliferative edge. Mutations in the RAS-MEK-ERK signaling pathway, for example, can cause diseases called histiocytoses if they arise in the myeloid cell lineage, which gives rise to blood and immune cells, including macrophages and microglia. Histiocytoses manifest in different ways, including leukemias, other tumors, and malfunctions in multiple organs. Mysteriously, a small fraction of carriers also get a neurodegenerative disease that manifests between childhood and middle age, with symptoms such as cerebellar ataxia and tremor (Lachenal et al., 2006; Wnorowski et al., 2008). The reason for the neurodegeneration has been amystery.
Geissmann and colleagues speculated it could be caused by microglia descended from erythro-myeloid progenitor cells (EMPs) harboring the same RAS-MEK-ERK somatic mutations. EMPs arise in the embryonic yolk sac early in development, and give rise to microglia in the brain and macrophages in other tissues (Perdiguero et al., 2014; Feb 2015 conference news).In contrast, circulating monocytes are continually replenished by hemotopoietic stem cells (HSCs) in the bonemarrow.
Doomed During Development? Histiocytoses arise from somatic mutations in hematopoietic stem cells (HSCs, left) or in erythro-myeloid progenitor (EMP) cells (right), which give rise to macrophages and microglia. The mutant microglia may cause inflammation, leading to neurodegeneration. [Courtesy of Tarnawsky and Yoder, Nature, News & Views,2017.]
To find out if somatic mutations in EMPs could beget microglia that trigger neurodegeneration, first author Elvira Mass and colleagues induced a somatic mutation that causes histiocytoses into mice. They chose the V600E variant of the BRAF gene, a substitution that switches on ERK signaling. The researchers generated transgenic mice carrying an inducible copy of the mutated BRAF gene, which could only be switched on via tamoxifen-induced Cre recombination in EMPs. This also turned on yellow fluorescent protein so the researchers could identify the cells. At embryonic day 8.5, they injected pregnant mice with a teeny dose of the drug to ensure that only a fraction of the embryos EMPs would express the mutation. About 10 percent of tissue resident macrophages, including microglia, in the resulting offspring expressed V600E BRAF at one month ofage.
The mutant microglia took up their positions in the brain, but were different from their normal counterparts from the get-go. Those carrying the V600E BRAF expressed elevated markers of proliferation, ERK signaling, and inflammation. In one-month-old mice, these feisty microglia had yet to cause trouble, but by four months of age, the researchers noticed neurological symptoms in the mice, including loss of hind limb reflexes and shortened stride. At seven months, 90 percent of the animals were affected and by nine months 60 percent of the mice had full hind limb paralysis. These symptoms, similar to cerebellar ataxia, are common in people with cerebral histiocytoses. Feeding the mice a BRAF inhibitor starting at one month of age drastically delayed onset and slowedprogression.
Compared to wild-type mice (left), animals with induced BRAF mutations in their EMPs had an expansion of mutant microglia expressing YFP in their spinal cord (middle). Microglia also expressed the activation marker CD68 (top) and phosphorylated ERK (bottom). [Courtesy of Mass et al., Nature2017.]
The researchers next searched for pathological changes that could have triggered the disorder. In month-old mice, the researchers found signs of elevated microglial and astrocyte activation, but not neuronal death. Oddly, by immunohistochemistry using the 22C11 antibody, the researchers noticed deposits of amyloid precursor protein (APP) in the inflamed areas, a phenomenon that Geissmann attributed to release of the membrane protein from newly damaged axons. In six-month-old animals, large clusters of activated, phagocytic microglia carrying the BRAF mutation crowded in the thalamus, brain stem, cerebellum, and spinal cord. These same regions were rife with synaptic and neuronal loss, demyelination, and astrogliosis. The mutant microglia had a small proliferative advantage compared with their wild-type counterparts, but Geissmann attributed the bulk of the neuronal damage to the activation of the cells, rather than their expansion. Treatment with a BRAF inhibitor mitigated theseresponses.
Gene expression analysis of mutant microglia taken from paralyzed mice revealed the differential expression of around 8,000 genes, 80 percent of which were upregulated compared to microglia from control mice. These genes included a bevy of pro-inflammatory mediators, including cytokines, phagocytosis boosters, matrix proteins, and growthfactors.
For some reason, the thalamus, brain stem, cerebellum, and spinal cord were uniquely vulnerable to the presence of the V600E BRAF mutant cells. Tissue macrophages carrying the mutation also expanded in the liver, spleen, kidney, and lung, even more so than in the brain, but did not cause damage in those regions. Geissmann speculated that differences in the tissue microenvironment could play a role in this selective vulnerability. For example, normal liver macrophages are in a near constant state of activation, Geissmann said, so the organ is equipped to deal with them. Perhaps the posterior part of the brain is unaccustomed to constant microglial activation, he said. Indeed, chronic microglial activation occurs during AD as well, and appears to ultimately inflict damage, rather than helpfulresponses.
Finally, the researchers investigated whether patients with histiocytoses also had abnormal microglia. They analyzed postmortem brain tissue from three patients with Erdheim-Chester disease (ECD), and conducted gene expression analysis on brain biopsies from one person with Langerhans cell histiocytosis (LCH), and another with juvenile xanthogranuloma (JXG). All of these patients had neurodegenerative disease associated with their histiocytoses, which were all caused by BRAF V600E mutations. In the ECD samples, the researchers spotted abundant activated microglia gathered at sites of neuronal loss, astrogliosis, and demyelination. Compared with data from five control samples, gene expression analysis on the JXG and LCH samples revealed an upregulation of genes in the MAPK pathway, including multiple pro-inflammatorycytokines.
The findings support the idea that activated microglia wreak havoc in the brain and cause neurodegeneration in people withhistiocytoses.
For a somatic mutation to have an effect, affected cells must propagate sufficiently. EMPs proliferate during early development, making it a prime time for mutant clones to multiply, Geissmann said. Perhaps the number of mutant clones born during the EMP stage would suffice to harm neurons, he said. However, if microglia are also bestowed with a proliferative edge, this would likely exacerbate the damage, he added. Either way, Geissmann proposed that inhibitors of ERK signaling might thwart neurodegeneration when mutant microglia areinvolved.
In an accompanying editorial, Stefan Tarnawsky and Mervin Yoder at Indiana University in Indianapolis noted opportunities for better diagnosis in this scenario. When somatic mutations occur in EMPs during early development, macrophages in many regions of the body will likely carry the mutations, not just microglia in the brain. This suggests that it might be possible to collect macrophage samples from more easily accessible, non-CNS tissues to look for biomarkers when diagnosing microglia-related disease, theywrote.
What about somatic mutations that might arise later in life, when tissue resident macrophages or microglia are already nestled into their permanent residences? Though recent studies reported that microglia are relatively long-lived cells, they proliferate in response to threats (Aug 2017 news),perhaps setting the stage for expansion of mutant cells, Geissmann speculated. That said, beyond people with histiocytoses, the contribution of somatic mutations in microglia to neurodegenerative disease is unclear. De Strooper and others have reported that genetic mosaicism in neurons could cause neurodegeneration (Jul 2015 news). A major impediment to studying this phenomenon is that somatic mutations that arise in the brain go undetected in standard genomic sequencing.JessicaShugart
No Available Further Reading
Read more:
Somatic SNAFUCan a Few Mutant Microglia Cause Neurodegenerative Disease? - Alzforum
- Exploring the Regenerative Mechanisms Behind Spinal Cord Injury Repair - Genetic Engineering & Biotechnology News - January 14th, 2025
- Electrically Active Transplantable Material Could Treat Brain and Spinal Cord Injuries - HospiMedica - January 14th, 2025
- Unlocking Spinal Cord Regeneration: Astrocytes Lead the Way - Neuroscience News - January 14th, 2025
- Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via... - December 9th, 2024
- Stem Cells Reveal Secret to Beneficial Proteins for mRNA Therapy - An Interview with Neuroscientist Prof. Dr. Antal Ngrdi - Szegedi Tudomnyegyetem - December 9th, 2024
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021