Space wombs for stem cells: Satellites could help accelerate the discovery of disease cures – Salon

By JoanneRUSSELL25

This week a very special delivery was made from space that will help further research that could eventually lead to a mind-blowing, futuristic way to cure diseases: shooting unmanned satellite wombs into orbit and then retrieving from them batches of stem cells that can be used to treat patients. Regardless of the outcome, the scientific experiment will still advance our knowledge of these unique cells.

On Thursday Dr. Abba Zubairat the Mayo Clinic in Jacksonville, Florida, received frozen stem cells grown at the International Space Station. The package was part of the 5,400 pounds of scientific samples and equipment that splashed down on Sunday off the coast of California inside a SpaceX Dragon-10 capsule completing a historic round-trip mission.

Up there, one of the astronauts helped us to image the cells, harvest the cells and freeze them in a way that we can use them here on Earth and compare them to cells we grew here in the lab, Zubair, the principal investigator of the stem cell experiment, told Salon.

Zubairs team will look to see if the culture grown in the near-zero gravity of low-space orbit, about 250 miles above the Earths surface, results in healthier cells than onesgrownin aterrestrial lab. If so then it would helpconfirm the theory that microgravity, which resembles the weightless-likebuoyancyof female womb, is best environment for growing stemscells.

Stem cells, from which all other types of cells originate, are the bodys raw materials, and as such offer immense potential to cure many diseases. Doctors already use stem cells forbone-marrow transplants and treating blood-related diseases like leukemia, as well asfor some eye-related disorders. Researchers believe were only in the very early stages of developing revolutionary stem cell therapiesto combat cancer, Alzheimers disease, Parkinsons disease, Type 1 diabetes, heart disease and strokes. In the future, stems cellscience could even lead to growing organs in a lab that can be transplanted into humans.

But stem cells are finicky. As they replicate in a lab, many of them develop imperfections and have to be discarded. It can take a month to grow the roughly 200,000 cells needed to treat one patient, Zubair said. Gravity might be the culprit.

In nature, these cells start their life after an egg is fertilized. Humans, right from conception, develop almost in a microgravity environment, Zubair said. Fetuses develop in amniotic fluid. Theyre buoyant, which cancels the effect of gravity because theyre suspended in a liquid. Thats how three-dimensional growth in a fluid environment is possible. We think gravity does play a role in the shape and development of the cells and how organs develop.

In other words, if the cells are suspended in fluid, they can grow and move in any direction, producing more of them, compared withhow they grow on a flat surface, like in a petri dish.

This is why stem cells are typically grown in a bioreactor, a common bioengineering tool that gently stirswater containing the seed cells and certain nutrients that promote growth. But because of the way gravity affectsfluids, many of the cells become damaged and cant be used for treatment. (In the language of physics, the problem has to do with something called shearing force.) By placing a bioreactor in the microgravity of orbit, the effects of gravity on liquid mechanics is virtually eliminated.

If growing stem cells in spaceproves to be efficient, thats when things get interesting. Growing stem cells at the International Space Station is anexperimental endeavor, so its not really a viable place to begin manufacturing themin great quantities. But theoretically, Zubair says, bioreactor satellites could be put into orbit and left there to grow cells until theyre remotely called back to Earth or sent wherever future interplanetary pilgrims wind up. As the cost of sending small satellites into low orbit falls, this system could be commercially viable.

There are companies that are interested in developing a floating lab in space to grow not only stem cells but also tissues and organs down the road for human use or for use elsewhere as we hopefully colonize other planets, like Mars, Zubair said.

This might seem out of this world, but the technology for growing stem cells remotely already exists. If space is the place to grow human parts and this research will help to determine that then designing systems and deploying these bioreactor space wombs might not be that far off in the future.

See the rest here:
Space wombs for stem cells: Satellites could help accelerate the discovery of disease cures - Salon

Related Post


categoriaBone Marrow Stem Cells commentoComments Off on Space wombs for stem cells: Satellites could help accelerate the discovery of disease cures – Salon | dataMarch 24th, 2017

About...

This author published 814 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024