St. Jude’s $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases – The Cancer Letter
By daniellenierenberg
Small dreams have no power to move hearts, and in a new six-year strategic plan, St. Jude Childrens Research Hospital is thinking very big.
What would it take to drastically increase cure rates for childhood cancer worldwide?
St. Judes answer: $11.5 billion and an additional 1,400 jobs.
To get a rough sense of scale, work it out with a pencil:
Spread over six yearsat $1.916 billion each yearits just under a third of the NCIs annual spend, fourfold this years projected revenues of the American Cancer Society, and more than seventyfold the budget of the World Health Organizations International Agency for Research on Cancer.
Its a broad and ambitious plan that will allow the institution to grow at an almost 8% compound annual growth rate, James Downing, president and CEO of St. Jude, said to The Cancer Letter.
At a global level, we also want to see identifiable increases in cure rates. We are watching those very carefully. Our goal is to move toward cure rates of 60% for diseases like acute lymphoblastic leukemia, Hodgkins lymphoma and Wilms tumor, Downing said. As we look at a global population, survival rates hover around 20%, and wed like to see those go up year by year.
A lot of our efforts are based on implementation science, looking at what works and what doesnt work. Workforce, drug distribution and true advancements in cure rates are what were seeking over the next six years.
The plan, rolled out on April 27, calls for an acceleration of research and treatment globallynot just for pediatric cancer, but also other illnesses, including blood disorders, neurological diseases, and infectious diseases.
Not surprisingly, this amount represents the largest investment the Memphis, Tenn. hospital has made in its nearly 60-year history. The previous strategic plan, the largest expansion in the institutions history, resulted in $7 billion in investments (The Cancer Letter, May 19, 2017).
The multi-phase expansion plan is funded almost entirely by steadily increasing donor contributions generated by ALSAC, the fundraising and awareness organization for St. Jude.
It is an ambitious plan. But were going to have lots of new personnel, new investments, new technology and new partnerships. We have formal partnerships with many U.N. associate agencies and organizations around the world.
Within the past six years, St. Jude has advanced fundamental, clinical, and translational research, Downing said.
Two years ago, we began strategically looking at the most pressing issues in the field of pediatric cancer, Downing said. As we developed the strategic plan over those two years, there were many ideas we critically assessed, and we often said, Its not really best for St. Jude to pursue that.
In the end, we aligned on goals that collectively bring the prospect of remarkable benefits to the field of childhood cancer, and to children with cancer everywhere.
On campus, St. Jude accepted nearly 20% more new cancer patients; increased faculty by 30% and staff by 23%; and embarked on several large-scale construction projects.
The new strategic plan focuses on five areas: fundamental science, childhood cancer, pediatric catastrophic diseases, global impact, and workforce and workplace culture.
Were coming out of a six-year strategic plan in which we increased our number of cancer patients by 20%, with 30% new faculty, 23% more staff, many large-scale construction projects, said Charles Roberts, executive vice president of St. Jude and director of the hospitals Comprehensive Cancer Center. And were now going into a new strategic plan that is 60% larger than our prior plan.
Under the plan, St. Jude will hire nearly 70 new faculty members, plus supporting laboratory staff, to work in basic, translational, and clinical research across 22 departments.
These investigators will have the freedom to pursue the type of conceptually driven research that leads to tomorrows clinical advances.
As we launch a strategic plan, weve identified the most exciting opportunities and challenges at that point in time, Roberts said to The Cancer Letter. However, we fully realize that we dont know whats coming next. New discoveries will be made, and new opportunities will emerge. Via the blue-sky process, weve set aside substantial funds every year to invest in the pursuit of emerging opportunities suggested by faculty and staff.
Part of what brought me here from Boston was the last strategic plan, and its so exciting to be a part of this. But just looking at the numbers, 1,400 new positions, average salary of $90,000. Six hundred and forty of those positions are in research, 266 are in clinical, 100 are in global pediatric medicine, and 394 in support.
Those are the kinds of numbers that you need to make these things real, and I think its exciting for St. Jude and for the field of cancer research, as we bring in all of these new folks.
During the next six years, St. Jude will invest more than $250 million to expand technology and resources available to scientists and clinicians in their search to understand why pediatric catastrophic diseases arise, spread and resist treatments. These investments will include:
St. Jude will invest $3.7 billion during the next six years to expand cancer-focused research and related clinical care. These efforts will center on raising survival rates for the highest-risk cancers and for children with relapsed diseases, while simultaneously improving quality of life for pediatric cancer survivors. The investments will include:
In the U.S., more than 80% of children diagnosed with cancer will be cured. In contrast, 80% of children with cancer live in limited-resource countries, where a mere 20% survive their disease. To address this, St. Jude will more than triple its investment in its international efforts coordinated through St. Jude Global and the St. Jude Global Alliance during the next six years.
This represents an investment of more than $470 million. Global initiatives include:
Under the plan, St. Jude will expand research and treatment programs to advance cures for childhood catastrophic diseases. The $1.1 billion, six-year investment includes work in nonmalignant hematological diseases, such as sickle cell disease; a new laboratory-based research program in infectious diseases that affect children worldwide; and a new research and clinical program to better understand and treat pediatric neurological diseases.
The plan outlines several strategies to encourage teamwork, and internal and external collaboration. These will include:
It is estimated that 87% of funds to sustain and grow St. Jude over the next six years will come from public donations.
Patients at St. Jude do not receive a bill for treatment, travel, housing or fooda model established by ALSAC and St. Jude founder Danny Thomas, who believed in equal access to medical care and driving research advances.
There are an incredible number of donors across the United States who support St. Jude, Downing said. This carries a great responsibility for us to seek the maximum possible impact to improve outcomes for childhood cancer.
Downing and Roberts spoke with Matthew Ong, associate editor of The Cancer Letter.
Matthew Ong: Congratulations on the official launch of St. Judes second six-year strategic plan. Could you briefly walk us through whats in it?
James Downing: It is an exciting time for St. Jude Childrens Research Hospital. Were finishing our prior six-year strategic plan, which started in Fiscal Year 2016. That $7 billion investment in the organization spanned fundamental science, clinical and translational research, clinical operations, and our global efforts. During the course of the plan, we increased faculty by 30% and staff by 23% and accelerated progress against pediatric catastrophic diseases.
About two years ago, we started discussing the next strategic plan. We looked critically at what we had accomplished under the previous plan, the expertise we had assembled, and the major problems in the field of pediatric catastrophic diseases, including cancer, infectious diseases, nonmalignant hematologic diseases and pediatric neurologic diseases. During that period, we involved more than 200 individuals across the institution to develop the new strategic plan.
This plan, at its core, focuses on accelerating progress against pediatric catastrophic diseases on a global scale. It outlines a $11.5 billion investment during the next six years, which includes the addition of 1,400 jobs and $1.9 billion in new capital investments, construction and renovations. Its a broad and ambitious plan that will allow the institution to grow at an almost 8% compound annual growth rate.
The plan has 11 goals, divided among five major areas: fundamental science, pediatric cancer, other childhood catastrophic diseases, global impact, and a focus on people and place. In each of these areas, were recruiting new individuals, investing in new technology, and expanding collaborations across campus, across the United States, and globally.
Ill start with fundamental science. In our last strategic plan, we invested heavily in increasing basic science programs on campus by expanding faculty numbers, technology and institutional data infrastructurein the belief that expanding fundamental science leads to new knowledge that helps advance cures. This is investigator-initiated science, often not related to diseases, but rather to the fundamental questions of biology.
In this new plan, were again investing heavily in expanding fundamental science at St. Jude. Weve committed more than $1 billion to fundamental science. This includes increasing laboratory-based faculty by more than 33% during the next six years, and more than $250 million dedicated to investments in technology.
Our goal is to make sure every dollar is spent wisely and effectively in pursuit of our missionto advance cures and means of prevention for pediatric catastrophic diseases through research and treatment.
The $250 million will fund multiple shared resources, department-based technology centers and new centers of excellence. Some of the faculty are being recruited to the centers of excellence, including those in data-driven discovery, innate immunity and inflammation, leukemia and advanced microscopy. These individuals will also have homes in academic departments.
On the technology front, were investing in shared resources. Well bring online some new ones, as well as some (Center for Modeling Pediatric Diseases and the Center for High-Content Screening) created at the end of the last strategic plan. The newest is focused on spatial transcriptomics. It will allow scientists across campus to look at the expression of genes in tissue context and at the single-cell level.
A new effort in structural biology is to create a $20 million Cryo-Electron Tomography Center. This is the next level of cryo-electron microscopy, which allows the identification of the structure of molecules or molecular machines within the context of cells. Its a developing technology that will feed other investments weve made in structural biology, such as the installation of one of the largest magnets in the world in our NMR facility, our Cryo-Electron Microscopy Center and single-cell analysis capabilities. The plan brings those tools to bear on defining normal biology and disease states.
Another effort is a Center of Excellence in Advanced Microscopy. Over the last six years, weve become one of the leading centers in the application of advanced microscopy to fundamental biology. This has been led by investigators in our Developmental Neurobiology, Cell and Molecular Biology, and Immunology departments.
Were positioned to build the next generation of microscopes to explore biology in ways never dreamed. With new faculty recruitments and collaborations with commercial companies and other institutions, we seek to develop the next generation of microscopes, and apply that to normal biology and to pediatric catastrophic diseases.
Another area were investing in heavily is data science. Over the last six years, and even before that, we expanded data sciences across campus. This initially started with the Pediatric Cancer Genome Project in 2010. Since then, we recruited many data scientists, and coalesced them into our Computational Biology, Biostatistics, and Epidemiology and Cancer Control departments, and into shared resources that provide bioinformatics support.
But over the last several years, weve seen the explosion of data, from structural biology to microscopy.
As we look to the future and the capabilities weve amassed, were poised to significantly increase our investment in data science and become a leading institution in the application of data science to biologic discovery. This is a $40 million investment with 30 full-time employees.
We have a task force led by faculty members to develop the roadmap for how were going to move forward. As data is accumulated and we look across those disparate data types, we can gain knowledge through true data scienceexploring that data and advancing our understanding of biology.
The last area in fundamental research is our graduate school. During the last strategic plan, we developed the St. Jude Graduate School of Biomedical Sciences, which offers a PhD and two masters programs.
Were going to expand that over the coming six years by increasing the number of students in the Biomedical Sciences PhD, the Master of Science in Global Child Health and the Master of Science in Clinical Investigations programs. We will also create a new masters program in data science. That will bring a new population of students to campus, which will further enhance our scientific enterprise.
Pediatric cancer is our next area of focus. This has always been our institutions major focus. This area encompasses $3.7 billion of the operating dollars we will spend over the next six years. Although weve invested heavily in this effort in the past, were going to expand it significantly.
Were going to focus on pediatric cancers where the least progress has been madecancers that are incurable and relapsed diseaseand gain insights into how we can change the outlook for those cancers.
The first area of investment is new faculty10 laboratory-based individuals who will expand our research efforts in understanding the biology of cancer. Some of those faculty will go into the Center of Excellence in Leukemia, but others will focus on solid tumors, brain tumors, or on biologic aspects that cut across cancer types.
Our second area for expansion will focus on assessing new therapeutic approaches for the highest-risk cancers. We need to access and evaluate more new therapies in a rigorous manner to identify those which should be moved forward into frontline clinical trials. Pediatric cancer encompasses many different types of cancer.
To run clinical trials, you need a sufficient number of patients to be able to answer questions in a reasonable time frame. We need a way to identify the best new agents to move into clinical trials.
Our investment in preclinical testing will help us set up that infrastructure. Much of it was established in the last strategic plan, but it must be expanded so that we have the best pediatric cancer models and can assess single and combination therapies to see which are worth moving forward into clinical trials.
On the clinical trial front, we want to expand our infrastructure to run those clinical trialsnot only on our campus, but in collaborations across the United States and around the globe. To make progress in some of these high-risk pediatric cancers, we need many patients. For many of the high-risk cancers, there are not a sufficient number of patients in the United States to conduct the trials. We, therefore, need to set up global collaborative networks that can address these high-risk cancers.
So, were investing in our ability to access drugs through commercial sources, to rigorously assess these in preclinical models and to establish the global infrastructure to run these clinical trials with an associated translational science infrastructure second to none.
Our third emphasis under the cancer focus is cancer immunotherapy. We began our work in cancer immunotherapy decades ago. We developed the chimeric antigen receptor, or CAR, against CD-19. That is the basis for the FDA-approved therapy that is being used right now on a variety of different fronts. Over the last several years, weve also invested heavily in expanding our cancer immunotherapy efforts, primarily focused on CAR-modified T cells.
As part of this new strategic plan, we are creating a new program, the Translational Immunology and Immunotherapy Initiative. It will facilitate cross-departmental efforts focused on cancer immunotherapy and will explore the fundamental biology of chimeric antigen receptor approaches to cancer immunotherapy.
What makes an ideal antigen that can be attacked by a chimeric antigen receptor? How does one manipulate CAR T cells so that they undergo exhaustion and stop killing the tumor? How do we change that? And what are the features of the microenvironment that decrease the killing potency of CAR T cells? These will require significant investments, including additional faculty.
Another emphasis will be looking at long-term toxicities of the therapies we use to treat children with cancer. As we cure more and more pediatric cancers, we must continually look at the toxicities from therapy and figure out how to reduce those without sacrificing the ability to be cured. Part of that is precision medicine, and so we are continuing to invest in our genomic and pharmacogenomic efforts and our proton therapy center.
Part of reducing toxicities comes from learning from long-term survivors. So, we will continue to invest in St. Jude LIFE, our long-term, follow-up study. We will expand that to some of the newer pediatric cancer therapies, including immunotherapy and targeted agents. We will assess long-term complications from these therapeutic approaches and try to define which patients will be susceptible to these toxicities.
MO: I have to mention the obvious: $11.5 billion is quite the budget. Your new strategic plan is work that, one could argue, might be on par or exceeds the coordination and budget required to realize multiple projects, say, at the World Health Organization or even at some U.S. federal agencies. What did it take for you and your team at St. Jude to get to this point?
JD: There are an incredible number of donors across the United States who support St. Jude. Our goal is to make sure every dollar is spent wisely and effectively in pursuit of our missionto advance cures and means of prevention for pediatric catastrophic diseases through research and treatment. This carries a great responsibility for us to seek the maximum possible impact to improve outcomes for childhood cancer.
We have the ideal team at St. Jude to execute this. Our leadership meets multiple times each week. Two years ago, we began strategically looking at the most pressing issues in the field of pediatric cancer. We discussed which areas represented the greatest opportunities for St. Jude to contribute. We talked to many experts inside and outside of the institutionaround the globeand made hard decisions as we went forward.
Strategic planning is deeply engrained at St. Jude as a rigorous process that is part of our scientific culture. We knew it was going to take two years to develop this plan. We dont hire consultants; we do it all ourselves. Faculty across the institution participated in the development of priorities and goals for this strategic plan via structured meetings.
As we developed the strategic plan over those two years, there were many ideas we critically assessed, and we often said, Its not really best for St. Jude to pursue that. In the end, we aligned on goals that collectively bring the prospect of remarkable benefits to the field of childhood cancer, and to children with cancer everywhere.
Every child who comes on this campus is part of our mission. We provide them with the best care possible. We do that in the context of research studies, so that were learning from every single patient. That means were not only helping children today; were also advancing cures for children tomorrow.
Weve rolled out the new strategic plan across campus during the last month, and the excitement is palpable. Our commitment continues long after the strategic plans launch.
We have routine strategic planning retreats, where we assess the goals for the year, evaluate progress against the prior years goals, perform talent assessments and proactively seek out emerging opportunities. Every employee on campus will develop yearly goals that cascade down from the goals of this plan.
As we develop this roadmap, we know there are going to be new ideas. Charlie can tell you about a process incorporated into the strategic plan that allows us to not only move forward on this roadmap, but also add initiatives as new ideas emerge.
Charles Roberts: Its a process we began with the last strategic plan, called our blue-sky process. As we launch a strategic plan, weve identified the most exciting opportunities and challenges at that point in time.
However, we fully realize that we dont know whats coming next. New discoveries will be made, and new opportunities will emerge. Via the blue-sky process, weve set aside substantial funds every year to invest in the pursuit of emerging opportunities suggested by faculty and staff.
Ideas that have emerged from the blue-sky process have been phenomenal. Our engagement with World Health Organization (WHO)a collaboration to raise childhood cancer survival rates internationallyis one example.
The Center for Modeling Pediatric Diseases is another example. This center makes iPS cells that come from patients so that we can investigate mechanisms that underlie cancer predisposition.
In another blue-sky project, were looking at DNA methylation to characterize pediatric solid tumors with the goal of identifying new therapeutic opportunities. Some of our immunotherapy initiatives also came out of the blue-sky process. Were looking forward to growing our blue-sky endeavors as we go forward.
Were coming out of a six-year strategic plan in which we increased our number of cancer patients by 20%, with 30% new faculty, 23% more staff, many large-scale construction projects. And were now going into a new strategic plan that is 60% larger than our prior plan.
The other central part of our strategic planning process focuses on the importance of collaboration. We have systematically incorporated a focus upon collaboration into our entire strategic planning and execution process. Our strategic planning efforts began by bringing together the intellectual resources of faculty and staff at St. Jude. This yielded projects that have interactions between many investigators on campus.
We recognize, however, that were still a relatively small institution, and theres a lot of expertise outside. We asked: How can we engage top scientists to tackle problems related to cancer and other catastrophic illnesses of childhood?
In pursuit of this, during our last strategic plan, we created the St. Jude Research Collaboratives, in which we fund investigators from multiple institutions who collaborate with investigators at St. Jude.
Initially, we were planning to fund two or three Collaboratives. However, they were remarkably successful, and top scientists eagerly joined.
Consequently, weve grown the program to five St. Jude Research Collaboratives already. These teams are each funded at an average of $8 million over 5 years, so each investigator is getting R01-level funding, or a little bit better. This has been a phenomenal success.
In the new strategic plan, were going to grow the program to a steady state of 11 funded collaboratives, representing close to a $90 million investment. So far, three of the Collaboratives are directly focused on childhood cancer. A fourth is a basic science-focused project relevant to childhood cancer. Were excited about the growth of this collaboration-focused program.
Lastly, Id like to address global collaboration. If you look across the globe, in low- and middle-income countries, the cure rates for childhood cancer are less than 20%.
This is a problem we know we can solve. Weve proven in the United States we can drive the cure rate to 80%. How can we help the rest of the world?
Because of the resources brought to us by our donors, we are able to think about these things, and so were now collaborating around the globe to drive cure rates forward for childhood cancer worldwide.
JD: As an example of new ideas and how rapidly we can act on them, Id like to tell you about a new blue-sky proposal that came up at the end of the last strategic plan. This idea was precipitated at a faculty retreat. One of our senior investigators was presenting, and during a coffee break, someone said, Well, what if you did this? That emerged into a blue-sky proposal, Seeing the Invisible in Protein Kinases. This was work from Dr. Babis Kalodimos, our Structural Biology department chair. He had a Science paper that came out several months ago, where he used the high-field NMR spectroscopy to look at the structure of the ABL kinase. He was able to identify transient conformational states that help to explain how resistant mutants work.
This gave us new insights into transient states that exist in molecules that can only be seen under high-field NMR, not with other structural biology approaches.
Based on that, we started thinking, Well, what if you did this on all kinases? What if you just did it against tyrosine kinases, serine kinases, receptor tyrosine kinases? What new rules would emerge from this? What would it tell us about families of kinases? What would it tell us about mechanisms of inhibition to kinase inhibitors? What might it tell us about new approaches to developing drugs against protein tyrosine kinases?
And since kinases are a major focus for targeted therapy, there was great excitement about pursuing these studies. Dr. Kalodimos developed the proposal and brought it forward; however, it was clear that this effort would be beyond the scope of our blue-sky process.
Blue-sky initiatives are usually somewhere in the $12 million range, and this was north of $30 million. Yet, in the end after thorough internal and external reviews, the project will move forward as part of the new strategic plan..
This is an approach that will give us fundamental knowledge and can have a profound impact on our understanding of a major class of targets for next-generation therapy.
MO: If I recall accurately, St. Jude has a network of partnerships with a few dozen countries worldwide. Does this plan call for an expansion of efforts within each of those countries? And how many of them?
JD: When I took over in 2014, we had what we called the International Outreach Program, which was 24 programs in 17 countries. During the programs 25-year history, we had made great progress. We were making significant impact and changing the outlook for children with cancer in those 17 countries. But we were affecting only about 3% of children with cancer across the globe, and the International Outreach Program was not scalable.
So, at the beginning of the last strategic plan, we recruited Dr. Carlos Rodriguez-Galindo. He developed a vision that after assessing, we decided to move forward on. This new effort encompasses the Department of Pediatric Global Medicine, St. Jude Global and the St. Jude Global Alliance.
These are all integrated. We developed a model that we think is scalable around the world, and we think this model ultimately can affect children with cancer everywhere.
The idea is that first we must train a workforce to treat children with cancer around the globe. We cant train the workforce ourselves, but we can train the trainers, who will then train the workforce.
- 001 Ying Liu discusses IPS cell therapy for ALS [Last Updated On: August 6th, 2011] [Originally Added On: August 6th, 2011]
- 002 Jeanne Loring talks about stem cells, part 2 [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 003 Embryonic Stem Cells From Skin: Making Old Cells Young [Last Updated On: September 5th, 2011] [Originally Added On: September 5th, 2011]
- 004 IPs cells Part3 [Last Updated On: September 6th, 2011] [Originally Added On: September 6th, 2011]
- 005 IPs cells Part 2 [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 006 A Century of Stem Cells - Johns Hopkins Medicine [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 007 Stem Cell Implications for ALS (Amyotrophic Lateral Sclerosis) [Last Updated On: September 7th, 2011] [Originally Added On: September 7th, 2011]
- 008 Myelin Repair Foundation on Stem Cell Research [Last Updated On: September 9th, 2011] [Originally Added On: September 9th, 2011]
- 009 IPs Cells Part 4 [Last Updated On: September 11th, 2011] [Originally Added On: September 11th, 2011]
- 010 National Medical Report [Last Updated On: September 13th, 2011] [Originally Added On: September 13th, 2011]
- 011 IPs cells Part 1 [Last Updated On: September 15th, 2011] [Originally Added On: September 15th, 2011]
- 012 iPS Stem Cell-Based Treatment of Epidermolysis Bullosa [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 013 Jeanne Loring talks about stem cells, part 1 [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 014 Kristopher Nazor 2 [Last Updated On: September 16th, 2011] [Originally Added On: September 16th, 2011]
- 015 Andalusian Stem Cell Bank [Last Updated On: September 19th, 2011] [Originally Added On: September 19th, 2011]
- 016 Cellular Reprogramming Stem Cell Domain Name For Sale! - CellularReprogramming.com [Last Updated On: September 20th, 2011] [Originally Added On: September 20th, 2011]
- 017 Dr. Oz to Oprah and Michael J Fox: "The stem cell debate is dead." [Last Updated On: September 22nd, 2011] [Originally Added On: September 22nd, 2011]
- 018 Manning, Owens Try Stem Cell Therapy [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 019 Jeanne Loring talks about stem cells, part 3 [Last Updated On: October 5th, 2011] [Originally Added On: October 5th, 2011]
- 020 Epidermolysis Bullosa: Corrected iPS Stem Cell-Based Therapy - Video [Last Updated On: October 13th, 2011] [Originally Added On: October 13th, 2011]
- 021 Introduction to Stem Cells - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 022 Parkinson's Disease: Progress and Promise in Stem Cell Research - Video [Last Updated On: October 14th, 2011] [Originally Added On: October 14th, 2011]
- 023 stem cell research - Video [Last Updated On: December 7th, 2011] [Originally Added On: December 7th, 2011]
- 024 Ian Wilmut discusses stem cell and direct cellular transformation therapy - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- 025 Jeff Bluestone: Immune rejection of stem cell transplants - Video [Last Updated On: December 8th, 2011] [Originally Added On: December 8th, 2011]
- 026 Advances in Stem Cell Research: Shinya Yamanaka - Video [Last Updated On: December 11th, 2011] [Originally Added On: December 11th, 2011]
- 027 2011 Summit: Stem Cells, Reprogramming and Personalized Medicine, Rudolf Jaenisch, MD - Video [Last Updated On: December 14th, 2011] [Originally Added On: December 14th, 2011]
- 028 Parkinson's Disease: Advancing Stem Cell Therapies - 2011 CIRM Grantee Meeting - Video [Last Updated On: January 20th, 2012] [Originally Added On: January 20th, 2012]
- 029 Professor Alan Trounson - World focus on stem cell research - Video [Last Updated On: January 27th, 2012] [Originally Added On: January 27th, 2012]
- 030 Stanford scientists turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 031 Researchers turn skin cells into neural precusors, bypassing stem-cell stage [Last Updated On: January 31st, 2012] [Originally Added On: January 31st, 2012]
- 032 “Wide-ranging applications for pluripotent stem cells” [Last Updated On: February 2nd, 2012] [Originally Added On: February 2nd, 2012]
- 033 Radiation treatment transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 034 Radiation Treatment Generates Cancer Stem Cells from Less Aggressive Breast Cancer Cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 035 Radiation treatment generates cancer stem cells from less aggressive breast cancer cells, study suggests [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 036 Life Technologies Scientist Uma Lakshmipathy presents, "Solving Challenges in the Generation of Induced Pluripotent ... [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 037 Radiation therapy transforms breast cancer cells into cancer stem cells [Last Updated On: February 14th, 2012] [Originally Added On: February 14th, 2012]
- 038 Research and Markets: Primary and Stem Cells: Gene Transfer Technologies and Applications [Last Updated On: February 15th, 2012] [Originally Added On: February 15th, 2012]
- 039 Horizon in new super-cell elite [Last Updated On: February 16th, 2012] [Originally Added On: February 16th, 2012]
- 040 Presentations at the Society of Toxicology Annual Meeting Demonstrate Superior Predictivity of Cellular Dynamics ... [Last Updated On: March 8th, 2012] [Originally Added On: March 8th, 2012]
- 041 New approach to treating type 1 diabetes? Transforming gut cells into insulin factories [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 042 Gut cells transformed into insulin factories 'could help to treat type I diabetes' [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 043 A new approach to treating type I diabetes? Gut cells transformed into insulin factories [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 044 Columbia Researchers Find Potential Role for Gut Cells in Treating Type I Diabetes [Last Updated On: March 12th, 2012] [Originally Added On: March 12th, 2012]
- 045 Study demonstrates cells can acquire new functions through transcriptional regulatory network [Last Updated On: March 14th, 2012] [Originally Added On: March 14th, 2012]
- 046 Gut Cells Turned To Insulin Factories - New Type l Diabetes Treatment [Last Updated On: March 14th, 2012] [Originally Added On: March 14th, 2012]
- 047 Cellular Dynamics Expands Distribution Agreement with iPS Academia Japan, Inc. to Include Distribution of iCell ... [Last Updated On: March 28th, 2012] [Originally Added On: March 28th, 2012]
- 048 :: 20, Apr 2012 :: IBN DISCOVERS HUMAN NEURAL STEM CELLS WITH TUMOR TARGETING ABILITY – A PROMISING DISCOVERY FOR ... [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 049 Human neural stem cells with tumor targeting ability discovered [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 050 IBN Discovers Human Neural Stem Cells, Promising Discovery For Breast Cancer Therapy [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 051 IBN Discovers Human Neural Stem Cells with Tumor Targeting Ability - A Promising Discovery for Breast Cancer Therapy [Last Updated On: April 22nd, 2012] [Originally Added On: April 22nd, 2012]
- 052 VistaGen Secures Key U.S. Patent Covering Stem Cell Technology Methods Used to Test Drug Candidates for Liver Toxicity [Last Updated On: April 25th, 2012] [Originally Added On: April 25th, 2012]
- 053 Improved adult-derived human stem cells have fewer genetic changes than expected [Last Updated On: May 2nd, 2012] [Originally Added On: May 2nd, 2012]
- 054 Researchers restore neuron function to brains damaged by Huntington's disease [Last Updated On: May 31st, 2012] [Originally Added On: May 31st, 2012]
- 055 Cellular Dynamics Launches MyCell™ Services [Last Updated On: June 7th, 2012] [Originally Added On: June 7th, 2012]
- 056 Fate Therapeutics And BD Biosciences Launch BD™ SMC4 To Improve Cellular Reprogramming And IPS Cell Culture Applications [Last Updated On: June 12th, 2012] [Originally Added On: June 12th, 2012]
- 057 Life Technologies and Cellular Dynamics International Partner for Global Commercialization of Novel Stem Cell ... [Last Updated On: June 13th, 2012] [Originally Added On: June 13th, 2012]
- 058 LIFE Focuses on Stem Cell Research - Analyst Blog [Last Updated On: June 20th, 2012] [Originally Added On: June 20th, 2012]
- 059 International Stem Cell Corp Granted Key Patent for Liver Disease Program [Last Updated On: September 30th, 2012] [Originally Added On: September 30th, 2012]
- 060 NeuroGeneration Recruits Top Scientist To Direct New Division of Biotherapeutics and Drug Discovery In La Jolla, CA [Last Updated On: October 5th, 2012] [Originally Added On: October 5th, 2012]
- 061 FRC Supports Alliance Defending Freedom, Jubilee Campaign Cert Petition to Supreme Court on Stem Cell Funding [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- 062 10/11/2012 10:05 JAPAN Nobel Prize for Yamanaka, scientific research and ethics must go hand in hand [Last Updated On: October 11th, 2012] [Originally Added On: October 11th, 2012]
- 063 Read in [Last Updated On: October 12th, 2012] [Originally Added On: October 12th, 2012]
- 064 Induced pluripotent stem cell - Wikipedia, the free encyclopedia [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 065 What are induced pluripotent stem cells or iPS cells? - Stem Cells ... [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 066 Stem Cell Definitions | California's Stem Cell Agency [Last Updated On: November 3rd, 2013] [Originally Added On: November 3rd, 2013]
- 067 iPSCTherapy.com: Induced Pluripotent Stem Cell therapy Information ... [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 068 Human muscle stem cell therapy gets help from zebrafish [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 069 Induced pluripotent stem cell therapy - Wikipedia, the free ... [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 070 IPS Cell Therapy - Genetherapy [Last Updated On: November 8th, 2013] [Originally Added On: November 8th, 2013]
- 071 MD Supervised Stem Cell Therapy [Last Updated On: November 9th, 2013] [Originally Added On: November 9th, 2013]
- 072 Stem Cell Therapy for Neuromuscular Diseases | InTechOpen [Last Updated On: November 23rd, 2013] [Originally Added On: November 23rd, 2013]
- 073 Combining Stem Cell Therapy with Gene Therapy | Boston ... [Last Updated On: November 25th, 2013] [Originally Added On: November 25th, 2013]
- 074 Biomanufacturing center takes central role in developing stem ... [Last Updated On: December 4th, 2013] [Originally Added On: December 4th, 2013]
- 075 Stem Cell Quick Reference - Learn Genetics [Last Updated On: December 6th, 2013] [Originally Added On: December 6th, 2013]
- 076 Induced Pluripotent Stem Cells (iPS) from Human Skin: Probable ... [Last Updated On: December 6th, 2013] [Originally Added On: December 6th, 2013]
- 077 'Something positive for humankind': Girls lend cells to genetic study [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 078 Stem cell science: Can two girls help change the face of medicine? [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 079 Okyanos Heart Institute CEO Matt Feshbach Congratulates Japan’s Legislators On Stem Cell Bill And Global Regulatory ... [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
- 080 Stem cells for Parkinson's getting ready for clinic [Last Updated On: December 13th, 2013] [Originally Added On: December 13th, 2013]
