Stanford scientists turn skin cells into neural precusors, bypassing stem-cell stage
By Dr. Matthew Watson
Public release date: 30-Jan-2012
[ | E-mail | Share ]
Contact: Krista Conger
kristac@stanford.edu
650-725-5371
Stanford University Medical Center
STANFORD, Calif. ? Mouse skin cells can be converted directly into cells that become the three main parts of the nervous system, according to researchers at the Stanford University School of Medicine. The finding is an extension of a previous study by the same group showing that mouse and human skin cells can be directly converted into functional neurons.
The multiple successes of the direct conversion method could refute the idea that pluripotency (a term that describes the ability of stem cells to become nearly any cell in the body) is necessary for a cell to transform from one cell type to another. Together, the results raise the possibility that embryonic stem cell research and another technique called "induced pluripotency" could be supplanted by a more direct way of generating specific types of cells for therapy or research.
This new study, which will be published online Jan. 30 in the Proceedings of the National Academy of Sciences, is a substantial advance over the previous paper in that it transforms the skin cells into neural precursor cells, as opposed to neurons. While neural precursor cells can differentiate into neurons, they can also become the two other main cell types in the nervous system: astrocytes and oligodendrocytes. In addition to their greater versatility, the newly derived neural precursor cells offer another advantage over neurons because they can be cultivated to large numbers in the laboratory ? a feature critical for their long-term usefulness in transplantation or drug screening.
In the study, the switch from skin to neural precursor cells occurred with high efficiency over a period of about three weeks after the addition of just three transcription factors. (In the previous study, a different combination of three transcription factors was used to generate mature neurons.) The finding implies that it may one day be possible to generate a variety of neural-system cells for transplantation that would perfectly match a human patient.
"We are thrilled about the prospects for potential medical use of these cells," said Marius Wernig, MD, assistant professor of pathology and a member of Stanford's Institute for Stem Cell Biology and Regenerative Medicine. "We've shown the cells can integrate into a mouse brain and produce a missing protein important for the conduction of electrical signal by the neurons. This is important because the mouse model we used mimics that of a human genetic brain disease. However, more work needs to be done to generate similar cells from human skin cells and assess their safety and efficacy."
Wernig is the senior author of the research. Graduate student Ernesto Lujan is the first author.
While much research has been devoted to harnessing the pluripotency of embryonic stem cells, taking those cells from an embryo and then implanting them in a patient could prove difficult because they would not match genetically. An alternative technique involves a concept called induced pluripotency, first described in 2006. In this approach, transcription factors are added to specialized cells like those found in skin to first drive them back along the developmental timeline to an undifferentiated stem-cell-like state. These "iPS cells" are then grown under a variety of conditions to induce them to re-specialize into many different cell types.
Scientists had thought that it was necessary for a cell to first enter an induced pluripotent state or for researchers to start with an embryonic stem cell, which is pluripotent by nature, before it could go on to become a new cell type. However, research from Wernig's laboratory in early 2010 showed that it was possible to directly convert one "adult" cell type to another with the application of specialized transcription factors, a process known as transdifferentiation.
Wernig and his colleagues first converted skin cells from an adult mouse to functional neurons (which they termed induced neuronal, or iN, cells), and then replicated the feat with human cells. In 2011 they showed that they could also directly convert liver cells into iN cells.
"Dr. Wernig's demonstration that fibroblasts can be converted into functional nerve cells opens the door to consider new ways to regenerate damaged neurons using cells surrounding the area of injury," said pediatric cardiologist Deepak Srivastava, MD, who was not involved in these studies. "It also suggests that we may be able to transdifferentiate cells into other cell types." Srivastava is the director of cardiovascular research at the Gladstone Institutes at the University of California-San Francisco. In 2010, Srivastava transdifferentiated mouse heart fibroblasts into beating heart muscle cells.
"Direct conversion has a number of advantages," said Lujan. "It occurs with relatively high efficiency and it generates a fairly homogenous population of cells. In contrast, cells derived from iPS cells must be carefully screened to eliminate any remaining pluripotent cells or cells that can differentiate into different lineages." Pluripotent cells can cause cancers when transplanted into animals or humans.
The lab's previous success converting skin cells into neurons spurred Wernig and Lujan to see if they could also generate the more-versatile neural precursor cells, or NPCs. To do so, they infected embryonic mouse skin cells ? a commonly used laboratory cell line ? with a virus encoding 11 transcription factors known to be expressed at high levels in NPCs. A little more than three weeks later, they saw that about 10 percent of the cells had begun to look and act like NPCs.
Repeated experiments allowed them to winnow the original panel of 11 transcription factors to just three: Brn2, Sox2 and FoxG1. (In contrast, the conversion of skin cells directly to functional neurons requires the transcription factors Brn2, Ascl1 and Myt1l.) Skin cells expressing these three transcription factors became neural precursor cells that were able to differentiate into not just neurons and astrocytes, but also oligodendrocytes, which make the myelin that insulates nerve fibers and allows them to transmit signals. The scientists dubbed the newly converted population "induced neural precursor cells," or iNPCs.
In addition to confirming that the astrocytes, neurons and oligodendrocytes were expressing the appropriate genes and that they resembled their naturally derived peers in both shape and function when grown in the laboratory, the researchers wanted to know how the iNPCs would react when transplanted into an animal. They injected them into the brains of newborn laboratory mice bred to lack the ability to myelinate neurons. After 10 weeks, Lujan found that the cells had differentiated into oligodendroytes and had begun to coat the animals' neurons with myelin.
"Not only do these cells appear functional in the laboratory, they also seem to be able to integrate appropriately in an in vivo animal model," said Lujan.
The scientists are now working to replicate the work with skin cells from adult mice and humans, but Lujan emphasized that much more research is needed before any human transplantation experiments could be conducted. In the meantime, however, the ability to quickly and efficiently generate neural precursor cells that can be grown in the laboratory to mass quantities and maintained over time will be valuable in disease and drug-targeting studies.
"In addition to direct therapeutic application, these cells may be very useful to study human diseases in a laboratory dish or even following transplantation into a developing rodent brain," said Wernig.
###
In addition to Wernig and Lujan, other Stanford researchers involved in the study include postdoctoral scholars Soham Chanda, PhD, and Henrik Ahlenius, PhD; and professor of molecular and cellular physiology Thomas Sudhof, MD.
The research was supported by the California Institute for Regenerative Medicine, the New York Stem Cell Foundation, the Ellison Medical Foundation, the Stinehart-Reed Foundation and the National Institutes of Health.
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital andamp; Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.
PRINT MEDIA CONTACT: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
BROADCAST MEDIA CONTACT: M.A. Malone at (650) 723-6912 (mamalone@stanford.edu)
[ | E-mail | Share ]
andnbsp;
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Read more here:
Stanford scientists turn skin cells into neural precusors, bypassing stem-cell stage
- Toward Personalized Cell Therapies by Using Stem Cells 2013: BioMed Research International - Wiley Online Library - November 15th, 2024
- Cell therapy for heart disease and therapeutic cloning: will embryos re-enter the stem cell race? - Genethique - November 15th, 2024
- Cutting-edge stem cell therapy proves safe, but will it ever be ... - AAAS - November 6th, 2024
- Induced pluripotent stem cell - Wikipedia - October 21st, 2024
- What are iPS cells? | For the Public | CiRA | Center for iPS Cell ... - October 21st, 2024
- Nobel Winner Shinya Yamanaka: Cell Therapy Is Very Promising For Cancer, Parkinsons, More - Forbes - October 13th, 2024
- iPSCs Manufacturing for Cell-Based Therapies: A Market Analysis of Cell Types, Therapeutic Applications, Ma... - WhaTech - August 4th, 2024
- Abu Dhabi Stem Cells Center partners with Japan-based Kyoto University and Rege Nephro - ZAWYA - January 14th, 2024
- Eterna Therapeutics Enters Into Option and License Agreement with Lineage Cell Therapeutics to Develop Hypoimmune Pluripotent Cell Lines for Multiple... - March 1st, 2023
- What is an Intrusion Prevention System? Definition ... - Fortinet - January 27th, 2023
- What is an IPS Monitor? Monitor Panel Types Explained ... - January 27th, 2023
- IPS panel - Wikipedia - January 27th, 2023
- Cell and gene therapy products: what is an ATMP? - The Niche - January 3rd, 2023
- Cell Therapy - an overview | ScienceDirect Topics - November 22nd, 2022
- Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022 - November 6th, 2022
- Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update - November 6th, 2022
- NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting - November 6th, 2022
- Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core... - November 6th, 2022
- CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver... - November 6th, 2022
- Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference - November 6th, 2022
- Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection - November 6th, 2022
- PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors - November 6th, 2022
- ORYZON to Give Updates on Corporate Progress in November - November 6th, 2022
- Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022 - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver... - November 6th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry ... - October 29th, 2022
- BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance - October 13th, 2022
- iPS-Cell Based Cell Therapies for Genetic Skin Disease - October 5th, 2022
- Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy - Marketscreener.com - October 5th, 2022
- MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo... - October 5th, 2022
- Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal - September 27th, 2022
- Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health - September 19th, 2022
- Current status of umbilical cord blood storage and provision to private biobanks by institutions handling childbirth in Japan - BMC Medical Ethics -... - September 19th, 2022
- Global Induced Pluripotent Stem Cells Market (2022 to 2027) - Growth, Trends, Covid-19 Impact and Forecasts - ResearchAndMarkets.com - Business Wire - September 11th, 2022
- Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials... - September 11th, 2022
- Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions | Scientific Reports - Nature.com - August 26th, 2022
- New research digs into the genetic drivers of heart failure, with an eye to precision treatments - STAT - August 10th, 2022
- Creative Biolabs Leads the Forefront of iPSC Technology - Digital Journal - August 10th, 2022
- The zinc link: Unraveling the mechanism of methionine-mediated pluripotency regulation - EurekAlert - July 25th, 2022
- Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks - Benzinga - July 16th, 2022
- PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press - July 8th, 2022
- Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ... - June 30th, 2022
- The benefits and risks of stem cell technology - PMC - June 30th, 2022
- The Future of Parkinson Disease Therapies and the Challenges With Stem Cell Therapies - Neurology Live - June 20th, 2022
- Umoja Biopharma and TreeFrog Therapeutics Announce Collaboration to Address Current Challenges Facing Ex Vivo Allogeneic Therapies in Immuno-Oncology... - June 11th, 2022
- Newsletter April 2022 - Progress in Cline's cell lab and in the stem cell therapy field - Marketscreener.com - April 29th, 2022
- Healios K K : Joint Research with the Division of Regenerative Medicine, the Institute of Medical Science for Developing a Mass Production Method of... - April 3rd, 2022
- A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy - March 22nd, 2022
- The Pipeline for of iPSC-Derived Cell Therapeutics in 2022 ... - March 22nd, 2022
- Cell Therapy Processing Market CAGR of 27.80% Share, Scope, Stake, Trends, Industry Size, Sales & Revenue, Growth, Opportunities and Demand with... - January 3rd, 2022
- Stem cell therapy for diabetes - PubMed Central (PMC) - November 22nd, 2021
- Stem cells: Therapy, controversy, and research - October 5th, 2021
- How much does stem cell therapy cost in 2021? - The Niche - October 5th, 2021
- "Stem cell-based therapeutics poised to become mainstream option - BSA bureau - October 5th, 2021
- Exclusive Report on Stem Cell Therapy in Cancer Market | Analysis and Opportunity Assessment from 2021-2028 |Aelan Cell Technologies, Baylx, Benitec... - August 6th, 2021
- Asia-Pacific Cell Therapy Market 2021-2028 - Opportunities in the Approval of Kymriah and Yescarta - PRNewswire - August 6th, 2021
- Base Editing as Therapy for Common Inherited Lung and Liver Disease Shows Promise - Clinical OMICs News - July 22nd, 2021
- MoHAP, EHS reveal immunotherapy for cancer, viral infections at Arab Health 2021 - WAM EN - June 25th, 2021
- Kiromic Announces Expansion of In-House Cell therapy cGMP Manufacturing Facility and the Appointment of Industry Veteran Ignacio Nez as Chief... - June 8th, 2021
- Cryopreservation Media helps in Development of a Cell Therapy for Parkinson's Disease - Microbioz India - June 8th, 2021
- Accelerated Biosciences' Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and... - May 15th, 2021
- Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting - PRNewswire - May 15th, 2021
- St. Jude's $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases - The Cancer Letter - May 15th, 2021
- Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines - The Scientist - April 19th, 2021
- The Google Play video app will leave Roku, Vizio, LG and Samsung's TV platforms - Yahoo Canada Finance - April 19th, 2021
- New Controversy for Stem Cell Therapy That Repairs Spinal Cords - The Great Courses Daily News - March 8th, 2021
- Brentuximab Vedotin Plus Chemotherapy Works as a Primary Option for Hodgkin Lymphoma - Targeted Oncology - March 8th, 2021
- Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances - January 14th, 2021
- A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire - December 10th, 2020
- Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace - December 9th, 2020
- Induced Pluripotent Stem Cell (iPS Cell) Applications in 2020 - November 28th, 2020
- Induced Pluripotent Stem Cell - an overview ... - November 28th, 2020
- The Stem Cell-Derived Cells market to Scale new heights in the next decade - Khabar South Asia - November 28th, 2020
- Stem Cells Market 2020: Rising with Immense Development Trends across the Globe by 2027 - The Market Feed - November 25th, 2020
- The Stem Cell-Derived Cells Market to witness explicit growth from 2019 and 2029 - The Haitian-Caribbean News Network - November 23rd, 2020
- Stem Cells Market Research Provides an In-Depth Analysis on the Future Growth Prospects and Industry Trends Adopted by the Competitors | (2020-2027),... - November 23rd, 2020
- The Stem Cell-Derived Cells market to go the astute way from 2019 to 2029 - TechnoWeekly - November 3rd, 2020
- Global Stem Cells Market 2020 Industry Demand, Share, Global Trend, Top Key Players Update, Business Statistics And Research Methodology By Forecast... - November 3rd, 2020
- Regenerative Medicine in Cosmetic Dermatology | MDedge ... - October 30th, 2020