Stem cell development: Experts offer insight into basic mechanisms of stem cell differentiation

By NEVAGiles23

The world has great expectations that stem cell research one day will revolutionize medicine. But in order to exploit the potential of stem cells, we need to understand how their development is regulated. Now researchers from University of Southern Denmark offer new insight.

Stem cells are cells that are able to develop into different specialized cell types with specific functions in the body. In adult humans these cells play an important role in tissue regeneration. The potential to act as repair cells can be exploited for disease control of e.g. Parkinson's or diabetes, which are diseases caused by the death of specialized cells. By manipulating the stem cells, they can be directed to develop into various specialized cell types. This however, requires knowledge of the processes that regulate their development.

Now Danish researchers from University of Southern Denmark report a new discovery that provides valuable insight into basic mechanisms of stem cell differentiation. The discovery could lead to new ways of making stem cells develop into exactly the type of cells that a physician may need for treating a disease.

"We have discovered that proteins called transcription factors work together in a new and complex way to reprogram the DNA strand when a stem cell develops into a specific cell type. Until now we thought that only a few transcription factors were responsible for this reprogramming, but that is not the case," explain postdoc Rasmus Siersbaek, Professor Susanne Mandrup and ph.d. Atefeh Rabiee from Department of Biochemistry and Molecular Biology at the University of Southern Denmark.

"An incredibly complex and previously unknown interplay between transcription factors takes place at specific locations in the cell's DNA, which we call 'hotspots'. This interplay at 'hotspots' appears to be of great importance for the development of stem cells. In the future it will therefore be very important to explore these 'hotspots' and the interplay between transcription factors in these regions in order to better understand the mechanisms that control the development of stem cells," explains Rasmus Siersbaek.

"When we understand these mechanisms, we have much better tools to make a stem cell develop in the direction we wish," he says.

Siersbaek, Mandrup and their colleagues made the discovery while studying how stem cells develop into fat cells. The Mandrup research group is interested in this differentiation process, because fundamental understanding of this will allow researchers to manipulate fat cell formation.

"We know that there are two types of fat cells; brown and white. The white fat cells store fat, while brown fat cells actually increase combustion of fat. Brown fat cells are found in especially infants, but adults also have varying amounts of these cells.

"If we manage to find ways to make stem cells develop into brown rather than white fat cells, it may be possible to reduce the development of obesity. Our findings open new possibilities to do this by focusing on the specific sites on the DNA where proteins work together," the researchers explain.

Details of the study

Read the original here:
Stem cell development: Experts offer insight into basic mechanisms of stem cell differentiation



categoriaUncategorized commentoComments Off on Stem cell development: Experts offer insight into basic mechanisms of stem cell differentiation | dataMay 24th, 2014

About...

This author published 858 posts in this site.
Just for fun

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025