Stem cell therapy for diabetes – PubMed Central (PMC)
By daniellenierenberg
Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.
Keywords: Embryonic stem cell, induced pluripotent stem cell, mesenchymal stem cell, diabetes
This lecture is based on a recent review.[1]
The increasing burden of diabetes worldwide is well-known, and the effects on health care costs and in human suffering, morbidity, and mortality will be primarily felt in the developing nations including India, China, and countries in Africa. New drugs are being developed at a rapid pace, and the last few years have seen several new classes of compounds for the treatment of diabetes e.g. glucagon-like peptide (GLP-1) mimetics, dipeptidyl-peptidase-4 (DPP-4) inhibitors, sodium glucose transporter-2 (SGLT2) inhibitors. New surgical treatments have also become increasingly available and advocated as effective therapies for diabetes. Gastric restriction surgery, gastric bypass surgery, simultaneous pancreas-kidney transplantation, pancreatic and islet transplantation have all been introduced in recent years. To avoid the trauma of a major operation, there have been many studies on the transplantation of isolated islets removed from a cadaveric pancreas. There was encouragement from the Edmonton protocol described by Shapiro and colleagues in the New England Journal in 2000. The islets were injected into the portal vein and patients, especially those suffering from dangerous, hypoglycemic unawareness, were treated before they had developed severe complications of diabetes, especially renal complications. While the early results were promising, with some 70% of the patients requiring no insulin injections after two years, at five years, most of these patients had deteriorated and required insulin supplements, despite some having received more than one transplant of islets. In the more recent series of patients, the Edmonton group has reported better long-term results with the use of the monoclonal anti-lymphocyte antibody, Campath 1H given as an induction agent, 45% of patients being insulin-independent at five years, and 75% had detectable C-peptide.
However, cadavaric pancreata and islets compete for the same source and are limited in number, and so, neither treatment could readily be offered to the vast majority of diabetic patients. Some have attempted to use an alternative source, for example, encapsulated islets from neonatal or adult pigs. This is still very experimental and will be a far away alternative with many technical and possibly ethical obstacles to overcome.
More recently, with the successes in the development of pluripotent adult stem cells (from Yamanaka, awarded the 2012 Nobel prize for medicine for developing induced pluripotent stem cells iPSCs), new approaches to seek a methods that may be more accessible and available have been attempted. Much hope was derived initially from embryonic stem cell (ESC) research, since these cells can be persuaded to multiply and develop into any tissue, but the process was expensive, and the problem of teratoma formation from these stem cells proved extremely difficult to overcome. Many of the important factors related to fetal development are not understood and cannot be reproduced. However, some progress has been made, and (occasionally) cells been persuaded to secrete insulin, but so far, there have been very minimal therapeutic application.
Scientists are now aware that to persuade a cell to produce insulin is only one step in what may be a long and difficult journey. Islets cells are highly specialized to have not only a basal release of insulin but also to respond rapidly to changes in blood glucose concentration. With insulin, the process and regulation of switching off secretion is as important as the switching on secretion.
A variety of approaches has been made with different starting points. The stem cell reproduces itself and can then also divide asymmetrically and form another cell type: This is known as differentiation. Although initially they were thought to be available only from embryos, non-embryonic stem cells can now be obtained without too much difficulty from neonatal tissue, umbilical cord, and also from a variety of adult tissues including bone marrow, skin, and fat. These stem cells can be expanded and made to differentiate, but their repertoire is restricted compared with embryonic stem cells: oligo- or pluri- as opposed to toti-potent embryonic stem cells. Even more, recently, there has been much interest in the process of direct cell trans-differentiation, in which a committed and fully differentiated cell, for example a liver cell, is changed directly to another cell type, for example an islet beta-cell, without induction of de-differentiation back to a stem cell stage.
Yamanaka, in 2006, was able to produce pluripotent stem cells from mouse neonatal and adult fibroblast cultures by adding a cocktail of four defined factors.[2] This led to a series of other studies developing the process, which was shown to be repeatable with human tissue as well as laboratory mice. The use of iPS cells avoided the ethical constraints of using human embryos, but there have been other problems and obstacles still. There have been emerging reports of iPS cells becoming antigenic to an autologous or isologous host, and the cells can accumulate DNA abnormalities and even retain epigenetic memory of the cell type of origin and thus have a tendency to revert back. Like embryonic stem cells, iPS cells can form teratoma, especially if differentiation is not complete.
Despite this, there has been very little success in directing differentiation of iPSCs to form islet beta-cells in sufficient quantity that will secrete and stop secretion in response to changes in blood glucose levels.
Another approach that has been tried is to combine gene therapy with stem cells. Some progress has been made in trying to express the desired insulin gene in more primitive undifferentiated cells by coaxing stem cells with differentiation factors in vitro and then by direct gene transfection using plasmids or a viral vector. We, and others, have used a human insulin gene construct and introduced ex vivo or in vivo into cells by direct electroporation (in ex vivo cells obviously) or by viral vectors. The adenovirus, adeno-associated virus, and various retro viruses have been most studied, especially the Lentivirus. However, any type of genetic engineering raises fears not only of infection from the virus but also of the unmasking of onco-genes, leading to malignancy, and there are strict regulations how to proceed to avoid these risks.
We have been interested in umbilical cord stem cells and in mesenchymal stem cells as targets for combined stem cell and gene therapy. These cells can be obtained in a reasonably easy and reproducible manner from otherwise discarded umbilical cord, or readily accessible bone marrow, selecting out the cells using various standard techniques. Fat, amnion, and umbilical cord blood are also sources, from which mesnechymal stem cells can be derived. After a proliferative phase, the cells take up an appearance similar to a carpet of fibroblasts, which can differentiate into bone, cartilage, or fat cells. Although mesenchymal stem cells from the various sources mentioned may look similar, their differentiation potentials are idiosyncratic and differ, which makes it inappropriate and difficult to think of them as a uniform source of target cells. Neonatal amnion cells and umbilical cord cells have low immunogenicity and do not express HLA class II antigens. They also secrete factors that inhibit immune reactions, for example, soluble HLA-G. Although immunogenicity is reduced significantly, they are still not autologous and, therefore, there remains a risk for allograft rejection. They have the advantage that they could be multiplied, frozen, and banked in large numbers and could be used in patients already needing immunosuppressive agents, for examples those having renal transplants.
In Singapore, our studies of umbilical cord-derived amnion cells have shown some success in having expression of insulin and glucagon genes, but little or no secretion of insulin in vitro. Together with insulin gene transfection in vitro, after peritoneal transplantation into sterptozotocin-induced diabetic mice, there was some improvement in glucose levels.[3] Our colleagues in Singapore[4,5] have used another model of autologous hepatocytes from streptozotocin-induced diabetic pigs. These separated hepatocytes were successfully transfected ex-vivo with a human insulin gene construct by electrophoration, and then the cells were injected directly back into the liver parenchyma using multiple separate injections. The pigs were cured of their diabetes for up to nine months - which is a remarkable achievement. As these were autotransplantations, no immunosuppressive drugs were necessary, but the liver cells were obtained from large open surgical biopsies. This necessity of surgical removal of liver tissue would limit its applicability, but nevertheless has been a good proof of concept study. In the context of autoimmune diabetes, the risk of recurrent disease may well persist unless the target of autoimmune attack could be defined and eliminated. In these porcine experiments, the human insulin gene with a glucose sensing promoter EGR-1 was used. There was no virus involved, and the plasmid does not integrate. Division of the transfected cell would dilute gene activity, but large numbers of plasmid can be produced cheaply. The same group of workers successfully transfected bone marrow mesenchymal stem cells with the human insulin gene plasmid using the same EGR-1 promoter and electrophoration. This cured diabetic mice after direct intra-hepatic and intra-peritoneal injection.
Finally, there should be caution in interpreting the results of these and other reports of cell and gene therapy for diabetes. In gene transfection and/or transplantation of insulin-producing cells or clusters in the diabetic rodent, there have been many reports in the literature, but only a few of these claims have been reproduced in independent laboratories. We have suggested the need to satisfy The Seven Pillars of Credibility as essential criteria in the evaluation of claims of success in the use of stem cell and/or gene therapy for diabetes.[1]
Cure of hyperglycemia
Response to glucose tolerance test
Evidence of appropriate C-peptide secretion
Weight gain
Prompt return of diabetes when the transfecting gene and/or insulin producing cells are removed
No islet regeneration of stereptozotocin-treated animals and no re-generation of pancreas in pancreatectomized animals
Presence of insulin storage granules in the treated cells
Here is the original post:
Stem cell therapy for diabetes - PubMed Central (PMC)
- FDA Grants Orphan Drug Designation to IPS HEARTs GIVI-MPC Stem Cell Therapy for Becker Muscular Dystrophy - Business Wire - January 14th, 2025
- GMP-compliant iPS cell lines show widespread plasticity in a new set of differentiation workflows for cell replacement and cancer immunotherapy -... - January 14th, 2025
- Stem cells head to the clinic: treatments for cancer, diabetes and Parkinsons disease could soon be here - Nature.com - December 27th, 2024
- Exclusive: Cell therapy startup Shinobi adds Borges as science chief, Katz as top medical officer - Endpoints News - December 18th, 2024
- Sumitomo Chemical and Sumitomo Pharma to Establish Regenerative Medicine and Cell Therapy Joint Venture - - December 18th, 2024
- Shinobi Strengthens Leadership to Propel Scalable Immune-Evasive Cell Therapies to the Clinic - The Eastern Progress Online - December 18th, 2024
- BrightPath Bio and Cellistic Announces Process Development and Manufacturing Collaboration for Phase 1 Clinical Trial of iPSC-derived BCMA CAR-iNKT... - December 18th, 2024
- Induced Pluripotent Stem Cells: Problems and Advantages when Applying ... - December 9th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 29th, 2024
- Toward Personalized Cell Therapies by Using Stem Cells 2013: BioMed Research International - Wiley Online Library - November 15th, 2024
- Cell therapy for heart disease and therapeutic cloning: will embryos re-enter the stem cell race? - Genethique - November 15th, 2024
- Cutting-edge stem cell therapy proves safe, but will it ever be ... - AAAS - November 6th, 2024
- Induced pluripotent stem cell - Wikipedia - October 21st, 2024
- What are iPS cells? | For the Public | CiRA | Center for iPS Cell ... - October 21st, 2024
- Nobel Winner Shinya Yamanaka: Cell Therapy Is Very Promising For Cancer, Parkinsons, More - Forbes - October 13th, 2024
- iPSCs Manufacturing for Cell-Based Therapies: A Market Analysis of Cell Types, Therapeutic Applications, Ma... - WhaTech - August 4th, 2024
- Abu Dhabi Stem Cells Center partners with Japan-based Kyoto University and Rege Nephro - ZAWYA - January 14th, 2024
- Eterna Therapeutics Enters Into Option and License Agreement with Lineage Cell Therapeutics to Develop Hypoimmune Pluripotent Cell Lines for Multiple... - March 1st, 2023
- What is an Intrusion Prevention System? Definition ... - Fortinet - January 27th, 2023
- What is an IPS Monitor? Monitor Panel Types Explained ... - January 27th, 2023
- IPS panel - Wikipedia - January 27th, 2023
- Cell and gene therapy products: what is an ATMP? - The Niche - January 3rd, 2023
- Cell Therapy - an overview | ScienceDirect Topics - November 22nd, 2022
- Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022 - November 6th, 2022
- Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update - November 6th, 2022
- NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting - November 6th, 2022
- Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core... - November 6th, 2022
- CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver... - November 6th, 2022
- Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference - November 6th, 2022
- Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection - November 6th, 2022
- PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors - November 6th, 2022
- ORYZON to Give Updates on Corporate Progress in November - November 6th, 2022
- Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022 - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver... - November 6th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry ... - October 29th, 2022
- BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance - October 13th, 2022
- iPS-Cell Based Cell Therapies for Genetic Skin Disease - October 5th, 2022
- Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy - Marketscreener.com - October 5th, 2022
- MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo... - October 5th, 2022
- Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal - September 27th, 2022
- Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health - September 19th, 2022
- Current status of umbilical cord blood storage and provision to private biobanks by institutions handling childbirth in Japan - BMC Medical Ethics -... - September 19th, 2022
- Global Induced Pluripotent Stem Cells Market (2022 to 2027) - Growth, Trends, Covid-19 Impact and Forecasts - ResearchAndMarkets.com - Business Wire - September 11th, 2022
- Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials... - September 11th, 2022
- Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions | Scientific Reports - Nature.com - August 26th, 2022
- New research digs into the genetic drivers of heart failure, with an eye to precision treatments - STAT - August 10th, 2022
- Creative Biolabs Leads the Forefront of iPSC Technology - Digital Journal - August 10th, 2022
- The zinc link: Unraveling the mechanism of methionine-mediated pluripotency regulation - EurekAlert - July 25th, 2022
- Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks - Benzinga - July 16th, 2022
- PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press - July 8th, 2022
- Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ... - June 30th, 2022
- The benefits and risks of stem cell technology - PMC - June 30th, 2022
- The Future of Parkinson Disease Therapies and the Challenges With Stem Cell Therapies - Neurology Live - June 20th, 2022
- Umoja Biopharma and TreeFrog Therapeutics Announce Collaboration to Address Current Challenges Facing Ex Vivo Allogeneic Therapies in Immuno-Oncology... - June 11th, 2022
- Newsletter April 2022 - Progress in Cline's cell lab and in the stem cell therapy field - Marketscreener.com - April 29th, 2022
- Healios K K : Joint Research with the Division of Regenerative Medicine, the Institute of Medical Science for Developing a Mass Production Method of... - April 3rd, 2022
- A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy - March 22nd, 2022
- The Pipeline for of iPSC-Derived Cell Therapeutics in 2022 ... - March 22nd, 2022
- Cell Therapy Processing Market CAGR of 27.80% Share, Scope, Stake, Trends, Industry Size, Sales & Revenue, Growth, Opportunities and Demand with... - January 3rd, 2022
- Stem cells: Therapy, controversy, and research - October 5th, 2021
- How much does stem cell therapy cost in 2021? - The Niche - October 5th, 2021
- "Stem cell-based therapeutics poised to become mainstream option - BSA bureau - October 5th, 2021
- Exclusive Report on Stem Cell Therapy in Cancer Market | Analysis and Opportunity Assessment from 2021-2028 |Aelan Cell Technologies, Baylx, Benitec... - August 6th, 2021
- Asia-Pacific Cell Therapy Market 2021-2028 - Opportunities in the Approval of Kymriah and Yescarta - PRNewswire - August 6th, 2021
- Base Editing as Therapy for Common Inherited Lung and Liver Disease Shows Promise - Clinical OMICs News - July 22nd, 2021
- MoHAP, EHS reveal immunotherapy for cancer, viral infections at Arab Health 2021 - WAM EN - June 25th, 2021
- Kiromic Announces Expansion of In-House Cell therapy cGMP Manufacturing Facility and the Appointment of Industry Veteran Ignacio Nez as Chief... - June 8th, 2021
- Cryopreservation Media helps in Development of a Cell Therapy for Parkinson's Disease - Microbioz India - June 8th, 2021
- Accelerated Biosciences' Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and... - May 15th, 2021
- Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting - PRNewswire - May 15th, 2021
- St. Jude's $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases - The Cancer Letter - May 15th, 2021
- Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines - The Scientist - April 19th, 2021
- The Google Play video app will leave Roku, Vizio, LG and Samsung's TV platforms - Yahoo Canada Finance - April 19th, 2021
- New Controversy for Stem Cell Therapy That Repairs Spinal Cords - The Great Courses Daily News - March 8th, 2021
- Brentuximab Vedotin Plus Chemotherapy Works as a Primary Option for Hodgkin Lymphoma - Targeted Oncology - March 8th, 2021
- Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances - January 14th, 2021
- A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire - December 10th, 2020
- Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace - December 9th, 2020
- Induced Pluripotent Stem Cell (iPS Cell) Applications in 2020 - November 28th, 2020