Stem Cells from a Diabetes Patient

By daniellenierenberg

Researchers hope stem cells could one day treat chronic conditions like diabetes and Parkinsons disease.

Healthy bloom: Insulin, shown in red, is being produced by cells that started as embryonic stem cells derived from a patient with type 1 diabetes.

A series of breakthroughs in cloning technology over the last year and a half are stoking hopes that cells could be used as treatments for patients with chronic, debilitating diseases such as diabetes and Parkinsons.

In January 2013, researchers at the Oregon Health and Science University reported that they had successfully created embryonic stem cells from a human embryo formed when the nucleus of one persons cell was transferred into another persons egg that had its original nucleus removed (see Human Embryonic Stem Cells Cloned). That was the first time stem cells had been made from such a cloned embryo, and the advance provides a potential route by which scientists could create various kinds of replacement cells based on a patients own genome. Many other research teams are pursuing another method of creating stem cells from a patients own cells, but some believe cells made with the cloning technique could be more likely to develop into a wide variety of cell types.

In the most recent advance for the cloning-based approach, a new report describes stem cells produced by cloning a skin cell from a woman with type 1 diabetes. The researchers were then able to turn those stem cells into insulin-producing cells resembling the beta cells that are lost in that disease. The immune system attacks these pancreatic cells, leaving patients unable to properly regulate their blood sugar levels.

Susan Solomon, a coauthor of the new study and cofounder of the New York Stem Cell Foundation (NYSCF), told reporters the results are an important step forward in our quest to develop healthy patient-specific stem cells to be used to replace cells that are diseased or dead.

The ultimate idea is to treat diabetes with insulin-producing cells made from a patients own cells and a donated egg. Currently, insulin-producing cells harvested from a cadaver are transplanted into some diabetes patients. But patients treated this way must take immunosuppressing drugs, and the number of cadaver cells is limited.

The cloned cells are thought to be better accepted by the immune system. But given that the body attacks its own beta cells, how can researchers prevent the immune destruction of the transplants? Its very difficult, says Solomon. We are acutely aware of the need to address both sides of the problem.

There are also regulatory issues surrounding the cloning method. Lead researcher and coauthor Dieter Egli began the research at Harvard University but moved it to the New York institution because Massachusetts restrictions on egg donation prevented the work from progressing.

Egg supply is another challenge. The cloning works about 10 percent of the time, and only three of the four cloned embryos in the experiment led to viable stem-cell lines. When you think about wider application of this technology for patients with diabetes, cardiovascular disease, [and others], you are talking about hundreds of millions of people, says Robert Lanza, a stem-cell pioneer at Advanced Cell Technology and coauthor of a recent cloning report. When you start talking about numbers like that, its just not going to be practical to use these cells in that patient-specific way.

Follow this link:
Stem Cells from a Diabetes Patient

Related Post


categoriaSkin Stem Cells commentoComments Off on Stem Cells from a Diabetes Patient | dataApril 29th, 2014

About...

This author published 4827 posts in this site.

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025