Stem Cells Improve Visual Function in Blind Mice

By raymumme

Newswise An experimental treatment for blindness, developed from a patients skin cells, improved the vision of blind mice in a study conducted by Columbia ophthalmologists and stem cell researchers.

The findings suggest that induced pluripotent stem (iPS) cells which are derived from adult human skin cells but have embryonic properties could soon be used to restore vision in people with macular degeneration and other diseases that affect the eyes retina.

With eye diseases, I think were getting close to a scenario where a patients own skin cells are used to replace retina cells destroyed by disease or degeneration, says the studys principal investigator, Stephen Tsang, MD, PhD, associate professor of ophthalmology and pathology & cell biology. Its often said that iPS transplantation will be important in the practice of medicine in some distant future, but our paper suggests the future is almost here.

The advent of human iPS cells in 2007 was greeted with excitement from scientists who hailed the development as a way to avoid the ethical complications of embryonic stem cells and create patient-specific stem cells. Like embryonic stem cells, iPS cells can develop into any type of cell. Thousands of different iPS cell lines from patients and healthy donors have been created in the last few years, but they are almost always used in research or drug screening.

No iPS cells have been transplanted into people, but many ophthalmologists say the eye is the ideal testing ground for iPS therapies.

The eye is a transparent and accessible part of the central nervous system, and thats a big advantage. We can put cells into the eye and monitor them every day with routine non-invasive clinical exams, Tsang says. And in the event of serious complications, removing the eye is not a life-threatening event.

In Tsangs new preclinical iPS study, human iPS cells derived from the skin cells of a 53-year-old donor were first transformed with a cocktail of growth factors into cells in the retina that lie underneath the eyes light-sensing cells.

The primary job of the retina cells is to nourish the light-sensing cells and protect the fragile cells from excess light, heat, and cellular debris. If the retina cells die which happens in macular degeneration and retinitis pigmentosa the photoreceptor cells degenerate and the patient loses vision. Macular degeneration is a leading cause of vision loss in the elderly, and it is estimated that 30 percent of people will have some form of macular degeneration by age 75. Macular degeneration currently affects 7 million Americans and its incidence is expected to double by 2020.

In their study, the researchers injected the iPS-derived retina cells into the right eyes of 34 mice that had a genetic mutation that caused their retina cells to degenerate.

In many animals, the human cells assimilated into mouse retina without disruption and functioned as normal retina cells well into the animals old age. Control mice that got injections of saline or inactive cells showed no improvement in retina tests.

Go here to read the rest:
Stem Cells Improve Visual Function in Blind Mice

Related Post


categoriaSkin Stem Cells commentoComments Off on Stem Cells Improve Visual Function in Blind Mice | dataOctober 2nd, 2012

About...

This author published 822 posts in this site.
Teacher, Educator, Speaker, Adult Stem Cell Advocate

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2025