Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M

By raymumme

A UCSF spinout is growing neuronal stemcells to transplant into the brain, for potential use in treating epilepsy, spinal cord injury, Parkinsons and Alzheimers disease and investors are listening. Because one thing thatdifferentiatesNeurona Therapeutics is that its stem cells turn exclusively intointerneuron cells which are less likely to be tumorigenic than other IPS cells.

The companyhasraised $7.6 million of a proposed $24.3 million round, according to a regulatory filing. But the companys staying a touch under the radar it lacks a website, and tis the season for calls to the company to remain unanswered.

But funding for the six-year-old company comes from 11 investors. Listed on the documents contact pages areTim Kutzkeyand David Goeddel, both partners at early stage healthcare venture firm The Column Group giving some insight into who the startupsinvestors are.

Also listed is Leo Guthart, a managing partner at New York private equity firm TopSpin Partner, and Arnold Kriegstein, director of the UCSF developmental and stem cell biology program.

Kriegsteinand his UCSF colleagues filed a patentfor the in vitro production of medial ganglionic eminence (MGE) precursor cells which are, in essence, immature cells that morphinto nerve cells. The work that led to the patent was funded bythe California Institute of Regenerative Medicine, the NIH and the Osher Foundation.

We think this one type of cell may be useful in treating several types of neurodevelopmental and neurodegenerative disorders in a targeted way,Kriegstein said in a UCSF statement last year.

Neurona Therapeutics scientific backers collaborated on a paper on these MGE cells inCell Stem Cell,finding that mouse models closely mimicked human cells inneural cell development and that human cells can successfully be transplanted into mouse brains. UCSF writes:

Kriegstein sees MGE cells as a potential treatment to better control nerve circuits that become overactive in certain neurological disorders. Unlike other neural stem cells that can form many cell types and that may potentially be less controllable as a consequence most MGE cells are restricted to producing a type of cell called an interneuron. Interneurons integrate into the brain and provide controlled inhibition to balance the activity of nerve circuits.

To generate MGE cells in the lab, the researchers reliably directed the differentiation of human pluripotent stem cells either human embryonic stem cells or induced pluripotent stem cells derived from human skin. These two kinds of stem cells have virtually unlimited potential to become any human cell type. When transplanted into a strain of mice that does not reject human tissue, the human MGE-like cells survived within the rodent forebrain, integrated into the brain by forming connections with rodent nerve cells, and matured into specialized subtypes of interneurons.

Get our daily newsletter or follow us.

Continued here:
Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M

Related Post


categoriaSkin Stem Cells commentoComments Off on Stem cells to transplant in the brain: Stealth UCSF spinout Neurona Therapeutics raises $7.6M | dataDecember 30th, 2014

About...

This author published 822 posts in this site.
Teacher, Educator, Speaker, Adult Stem Cell Advocate

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024