The Fallacy of Banking Umbilical Cord Blood for Your Baby – The Wire Science
By daniellenierenberg
Featured image: A human baby, just days after its birth, with the umbilical cord stump still attached. Photo: Wikimedia Commons/Evan-Amos, Public Domain
My patient, a man in his 70s, sat a few feet away from me in a clinic room at our cancer centre. His wife was by his side, both literally and emotionally she was his touchstone, his connection to the normal life he led before his leukemia diagnosis. I noticed they tended to wear outfits that even complemented each other, as if their sartorial choices had harmonized and become intertwined along with their affection over the 40 years of their marriage. Their choice for the day: grey sweatshirts declaring their allegiance to the hapless Cleveland Browns.
He had weathered the slings and arrows of the chemotherapy we used to treat his cancer during a five-week hospital stay, and now was in a tenuous remission. We talked about the next steps in his treatment, which ranged from giving him a break, to more chemotherapy, to considering the most aggressive intervention we could offer a bone marrow transplant.
The phrase bone marrow transplant was a bit of a misnomer, though. While we could wipe out any residual leukemia in his bone marrow with high-dose chemotherapy and replace his fresh bone marrow from a healthy person, we may not be able to find a good bone marrow match. Another potential option: We could use umbilical cord blood from a newborn, which is rich in the stem cells normally found in the bone marrow, and which recent studies have shown may not need to match as closely as is necessary for a marrow donor. Hearing this, my patients wife interjected.
Our daughter is pregnant, and her due date is next month. She started, glancing at my patient as he nodded his head in agreement. She wanted us to ask if she should save the babys cord blood in case he needs it for a transplant.
I explained to them that the babys cord blood was unlikely to be a close enough match to my patient, as my patients daughter would only be a half-match for him, and her baby less than that. My patient then asked me a question I have been hearing more and more over the years: Should my daughter save the cord blood in case our grandbaby needs it, in case he or she develops cancer?
Indeed, in the US, the practice of storing umbilical cord blood is steadily on the rise. Banking cord blood in case a bone marrow transplant is needed in the future is appealing on so many levels. The umbilical cord attaching the developing fetus to its mothers placenta is rich in those juicy bone marrow stem cells that are so effective at making the blood components. Coming from an infant at the time of birth, they should be uncorrupted by cancer (emphasis on theshould, as well see in a moment). Cord blood is also easy to collect: At the time of delivery, after the cord is cut, the remaining blood in that cord is milked out into a collection bag. That bag is then kept in a freezer until the time comes, if ever, when it is needed and can be infused as a transplant.
The cost of using commercial cord blood banking companies, however, can be substantial. Upfront charges with whats called an enrollment fee can range from $1,500 to $3,500. On top of that, a yearly storage fee is assessed, with the total amount for 18-20 years of storage cresting $5,000 in some cases.
Brochures for these companies line Plexiglas display cases in obstetrics offices, with pamphlets exhorting nervous, expectant parents to protect their baby from the medical evils that lie ahead. What better source for a transplant than a childs own, pure stem cells, harvested at a time years before that child ever developed cancer? But cost aside, is the effort even worth it for the risk that a child may one day develop a cancer and need a future transplant?
Taking a couple of things into consideration
To answer this question, we need to take a couple of things into consideration. First, what is the likelihood of a child developing a cancer, and then needing a transplant to treat that cancer? Astudy conducted by the Center for International Blood and Marrow Transplant Research attempted to figure this out. They first identified the cancers for which transplantation could potentially be needed. For people aged 0-19 years (the length of time a cord blood would be kept banked) leukemia was the most common, followed by lymphoma, neuroblastoma, brain tumors, and sarcomas. Cancer in children and adolescents are rare all told, the incidence rate in the US for all of these cancers combined is about 12 per 100,000 children per year. Its horrible if its your child who develops cancer, but pediatric cancer is still an uncommon event.
The next conclusion is based on the likelihood that these cancers would not be eradicated by chemotherapy and/or radiation therapy and would require an allogeneic transplant that is, one that uses stem cells taken from a genetically matched donor and the assumption that everyone could identify a sibling or brother from another mother transplant and was healthy enough to undergo the procedure. The authors estimated that the incidence rate of transplant for children and adolescents was a little over 2 per 100,000 per year in the US during their first two decades of life. Analyzed another way, the probability a child will need a transplant by the time he or she reaches age 20 is 0.04%.
The lifetime chance of getting struck by lightning is similar, at about 1 in 3,000, or 0.033%.
Would you pay thousands of dollars for a medication right now, in the event that sometime in your life you may be struck by lightning, and that medication may help you survive the lightning strike?
Seems excessive to me.
Also Read: Crosstalk: How Two Modest Heroes Won the Battle Against Childhood Leukaemia
Is cord blood really as pure as we think?
A second way of determining the value of cord blood banking in case a child develops cancer is to consider whether that cord blood is really as pure as we think. The most common childhood cancer through age 19 is leukemia, with an annual incidence rate of 4.7 per 100,000 children in the US. Could it be possible that the leukemia was present at some small level even at birth, years before the child was diagnosed with leukemia?
One approach to studying this would be to screen every newborn for leukemia. Given the incidence rate of childhood leukemia, this would mean subjecting over 21,000 babies to a blood test for every case of future leukemia identified.
Its difficult to justify that type of monumental screening effort to answer a research question about the origins of leukemia. A more reasonable approach would be to identify children who have leukemia, and try to determine whether they had it when they were born.
But how to go about obtaining a blood sample from a birth that occurred years earlier? A group of clever scientists from the UK and Germany thought the answer might be found in something called Guthrie cards. Robert Guthrie was a microbiologist working at the Roswell Park Cancer Institute in Buffalo, New York, in the 1950s when his niece was diagnosed with phenylketonuria (PKU), an inherited deficiency in the enzyme necessary to metabolize the amino acid phenylalanine. If caught early enough, an infants diet can be modified so that the effects of the deficiency are minimised. If not, the condition can lead to developmental defects and mental disability.
Guthries niece was not so lucky.
This, and having a child of his own with cognitive delays, motivated Guthrie to devote his career to detecting preventable childhood diseases. He developed a test for PKU that could be performed when a drop of blood from a finger prick or heel stick was applied to filter paper on a card. It was successfully piloted in Newark in 1960, and by 1963, 400,000 infants had been tested in 29 states. Testing spread around the country, and across the pond.
And hospital laboratories kept those Guthrie cards for years after a child was born.
A startling discovery
The scientistsfound three children with acute lymphocytic leukemia (more common in children than AML, whereas the opposite is true in adults) who had the same chromosome mutation associated with their leukemias a translocation of chromosomes 4 and 11. After obtaining permission from the parents of these children, the scientists then searched laboratory repositories to find the Guthrie cards stored there from when the children were born.
They used a PCR-specific lab test for this translocation on the dried blood still remaining on the childrens Guthrie cards, and were able to detect the chromosome abnormality for all three children from a blood drop obtained months or years before the leukemia was diagnosed. In another, similar study, the same group of scientists was able to detect chromosome evidence of leukemia in 9 of the 12 Guthrie cards obtained from children who diagnosed with leukemia between two and five years later.
The leukemia was there all along, even prior to birth in these children, waiting years in some cases to rear its ugly head. And if the leukemia was measurable on a genetic level in their blood, it was almost certainly present in their cord blood. Banking cord blood from these children would have preserved those juicy, healthy stem cells, but also probably cells already corrupted by genetic abnormalities that would lead to leukemia again, if the cells were re-infused into a child as a transplant years later.
Getting back to the question: Is the cost and effort of banking cord blood worth it for the risk that a child may one day develop a cancer and need a future transplant?
I didnt think so when my three children were born.
But I did have their cord blood collected and I donated it to be stored for use through theBe The Match programme, in case a complete stranger needs it. So that one day, my children could be the brothers from another mother, or sister from another mister me being the mister!
And so that one day, my patients wont have to forego potentially curative treatments for their leukemias because they cant find an adequate donor.
Mikkael Sekeres is the director of the Leukemia Program at the Cleveland Clinic and the author of When Blood Breaks Down: Life Lessons from Leukemia, from which this article is adapted.
This article was originally published on The MIT Press Reader.
Follow this link:
The Fallacy of Banking Umbilical Cord Blood for Your Baby - The Wire Science
- Hematopoietic Stem Cell Transplantation - StatPearls - NCBI ... - January 22nd, 2025
- Doctors retrieve stem cells from 20-month-old to treat thalassaemic sister - The Times of India - January 22nd, 2025
- YolTech Therapeutics to Initiate a Clinical Trial for YOLT-204, a First-in-Class Bone Marrow-Targeted In Vivo Gene Editing Therapy for -Thalassemia -... - January 22nd, 2025
- School of Medicine professor receives grant to study improved cancer treatments - Mercer University - January 14th, 2025
- 1st stem cell therapy, new HIV drug approved - ecns - January 5th, 2025
- Suppression of thrombospondin-1mediated inflammaging prolongs hematopoietic health span - Science - January 5th, 2025
- A pilot raced through the airport to surprise an old friend: the woman who saved his life - CNN - December 27th, 2024
- Types of Stem Cell and Bone Marrow Transplants - December 27th, 2024
- Explained: What is mesenchymal stem cell therapy? - Drug Discovery News - December 18th, 2024
- Stem Cell Transplants Offer New Hope for Saving the Worlds Corals - Technology Networks - December 18th, 2024
- Scientists Present Research on Novel Cancer Therapies at ASH - City of Hope - December 18th, 2024
- Navigating CAR-T cell therapy long-term complications - Nature.com - December 18th, 2024
- High-dose chemotherapy followed by autologous stem cell transplant ineffective for patients with mantle cell lymphoma - News-Medical.Net - December 18th, 2024
- Stem Cell Therapy Market Is Expected To Reach Revenue Of - GlobeNewswire - December 18th, 2024
- The Importance of Cellular Therapy in the Clinical Case of a Young Man With a Challenging Precursor B-cell Lymphoblastic Leukemia - Cureus - December 18th, 2024
- A search for the perfect match, Apex six year old in need of donor - CBS17.com - December 18th, 2024
- New insights into survival of breast cancer cells in the bone marrow - News-Medical.Net - December 9th, 2024
- Cellular trafficking and fate mapping of cells within the nervous system after in utero hematopoietic cell transplantation - Nature.com - December 9th, 2024
- Saving lives, one stem cell at a time - Texas A&M The Battalion - December 9th, 2024
- Turn Biotechnologies Announces Landmark Study to Assess Effectiveness of ERA Therapy in Restoring Bone Marrow - PR Newswire UK - December 9th, 2024
- Orca Bio Presents Three-Year Survival Data with Orca-T in Patients with Hematological Malignancies at the 66th ASH Annual Meeting - Yahoo Finance - December 9th, 2024
- You are the match. How UNC student honored her late grandfather with life-saving effort - Raleigh News & Observer - November 29th, 2024
- scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes... - November 29th, 2024
- Atlanta pilot with an aggressive cancer finds lifesaving help from a stranger and a simple test - The Atlanta Journal Constitution - November 29th, 2024
- Researchers have brought the promise of stem cell therapies closer to reality - The Week - November 29th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
- Vericel Announces FDA Approval of NexoBrid for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- Codexis Publishes FY2023 Sustainability Disclosures - August 19th, 2024
- MediWound Announces U.S. Food and Drug Administration Approval of NexoBrid® for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- First Successful Paediatric Allogeneic Bone Marrow Transplant In Bengaluru; Know All About The Procedure - Onlymyhealth - August 4th, 2024
- Is Stem Cell Transplant Often The Only Treatment Option For Blood Cancer Patients? Why So? - News18 - June 2nd, 2024
- This Swedish startup wants to reduce the cost, and controversy, around stem cell production - TechCrunch - March 10th, 2024
- Bone Marrow Transplantation | Johns Hopkins Medicine - December 20th, 2023
- Mansour bin Zayed witnesses inauguration of ADSCC Bone Marrow Transplant & Cellular Therapy Congress 2023 - ZAWYA - November 26th, 2023
- ADSCC Bone Marrow Transplant and Cellular Therapy Congress 2023 to take place in Abu Dhabi - ZAWYA - November 18th, 2023
- Orchard Therapeutics Reports First Quarter 2023 Financial Results and Announces Initiation of Rolling Submission for Biologics License Application of... - May 16th, 2023
- Family of 7-month-old in need of bone marrow transplant hosting donor registration event - CBS Pittsburgh - May 8th, 2023
- Anika Continues to Expand Addressable Market for Tactoset Injectable Bone Substitute with Additional 510(k) Clearance from FDA - Marketscreener.com - April 5th, 2023
- MorphoSys Completes Enrollment of Phase 3 MANIFEST-2 Study of Pelabresib in Myelofibrosis with Topline Results Expected by End of 2023 -... - April 5th, 2023
- VOR BIOPHARMA INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-K) - Marketscreener.com - March 25th, 2023
- BioRestorative Therapies to Seek FDA Approval to Expand the Clinical Application of BRTX-100 - Marketscreener.com - March 17th, 2023