Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday – Space.com
By daniellenierenberg
Editor's note: SpaceX has successfully launched the Dragon CRS-21 cargo mission for NASA and landed its Falcon 9 rocket. Read our launch wrap story here.
CAPE CANAVERAL, Fla. The next SpaceX resupply launch to the International Space Station, scheduled for Sunday (Dec. 6), will carry a host of science gear to the astronauts living and working on the orbiting laboratory.
The robotic flight, called CRS-21, marks the 21st mission for SpaceX under its commercial cargo resupply services contract with NASA. Launch is scheduled for 11:17 a.m. EST (1617 GMT) on Sunday from NASA's Kennedy Space Center in Florida, and you can watch the action live here at Space.com, courtesy of NASA. You can also watch directly via NASA TV or SpaceX.
SpaceX initially aimed to launch the CRS-21 cargo mission for NASA on Saturday (Dec. 5), but foul weather prompted a delay. "Due to poor weather in the recovery area for todays attempt, now targeting Sunday, December 6 at 11:17 a.m. EST for launch of CRS-21," SpaceX wrote in an update early Saturday morning. SpaceX plans to recover the mission's Falcon 9 booster for later reuse.
The upgraded Dragon cargo capsule that will launch atop a veteran SpaceX Falcon 9 rocket is filled with 6,400 lbs. (2,903 kilograms) of supplies and science investigations. The research gear will support a variety of experiments in the life sciences, regenerative medicine and many other fields.
Related: How SpaceX's Dragon space capsule works (infographic)
Saturday's flight will mark the first time SpaceXs upgraded Dragon spacecraft will carry cargo. (Up until now, the advanced Dragon variant has solely carried astronauts.) The vehicle is a modified version of the Crew Dragon spacecraft that lacks the systems necessary for human missions, such as seats, cockpit controls and a life-support system, as well as the SuperDraco thrusters that provide a special emergency escape system that's only used if a problem occurs during launch.
This new Dragon allows more science to ride skyward. Costello explained that the interior of Dragon can now support more powered payloads, which is a huge benefit for the life sciences as it allows for more cold storage and other types of investigations. It also allows for the crew to store some of the powered payloads onboard Dragon while the craft is on orbit.
Several of the payloads on Dragon feature a unique piece of hardware called a tissue chip. Human cells and tissue grow on the chip scaffold, creating a 3D structure in microgravity that researchers can observe to learn more about how fundamental processes work in space, including aging and bone and muscle loss.
One such investigation, run by the University of Florida, will study how muscles atrophy in space. Sixteen samples of skeletal muscle will be sent to the space station, where the bundles of muscle tissue will be observed in microgravity. Half of the muscle samples were donated by younger, active individuals while the other half are from older, more sedentary volunteers.
Half of the samples in each group will be subjected to electric stimuli to see how the muscles contract in the absence of gravity. Researchers will use this experiment as a starting point for future research that will eventually test therapies to see if muscle degradation can be prevented.
Another payload will look at brain organoids created using stem cell technology. This investigation seeks to understand how microgravity affects the survival and function of brain cells, which could lead to advances in treatments for autism and Alzheimers disease, researchers said.
"Space travel mimics the effects of aging we see on Earth, only in a much shorter time span, making it easier to examine the processes that are taking place," Bill McLamb, chief scientist at Kentucky-based company Space Tango, told Space.com. "Its hard to study human brains in space, which is why these types of experiments are so beneficial."
The investigation will take stem cells and convert them into brain cells that will form three-dimensional structures called brain organoids. Stored in a special container called a well, these types of mini organs are able to mimic both the cellular variety and the function of the developing human brain.
This type of research could help NASA and its partners prepare for crewed missions to distant destinations such as Mars, which will expose astronauts to the rigors of space for long stretches, and also help combat degenerative brain disease here on Earth, researchers said.
A team of researchers from Stanford University will be looking at how engineered heart tissue behaves in microgravity. The Cardinal Heart investigation will send tissue samples that consist of cardiomyocytes, endothelial cells and cardiac fibroblasts to study how changes in gravity affect the heart at the cellular level.
Researchers know that microgravity causes changes in the workload and shape of the human heart, but it's still unknown if these changes could become permanent if a person lived for long periods of time in space.
The project's tissue bundles will be affixed to tissue chips. The experiment's results could help identify new treatments and support development of screening measures to predict cardiovascular risk prior to spaceflight, team members said. Follow-on investigations will include therapies that could treat heart disease.
The HemoCue investigation will look at how white blood cells react in space. Here on Earth, doctors use the total number of white blood cells, as well as the various types observed, to diagnose illness. HemoCue will debut a new type of technology that will allow users to do white blood cell counts on orbit.
The goal is to test how well the device works in microgravity. If effective, it could be a valuable tool in an astronauts medical kit, researchers said.
Another payload called Micro-14 looks at how yeast, in particular Candida albicans, responds to the space environment. C. albicans is an opportunistic pathogen, capable of causing severe and even life-threatening illness in immunocompromised hosts. Micro-14 will evaluate how the yeast responds to microgravity, looking for changes at the cellular and molecular levels.
Since astronauts can become immunocompromised during spaceflight, researchers are especially interested in how best to predict the health risks from this organism. Previous research has shown that many microbes exhibit increased virulence in a microgravity environment, but more research is needed on this particular pathogen.
NASAs Jet Propulsion Laboratory in Southern California is spearheading a project that will take swab samples from various locations within the station to look at the relationship between bacteria and their metabolites (chemicals produced by bacterial growth). The project will help researchers better understand the distribution of microbes and metabolites within closed environments and how this distribution affects human health. The research could aid administrators of hospitals and nursing homes, where residents are often immunocompromised.
Related: SpaceX rocket launches for record 7th time, nails landing at sea
Sunday's launch marks the 101st flight overall for SpaceXs workhorse two-stage Falcon 9 rocket. The liftoff is expected to feature a veteran Falcon 9 first stage, designated B1058, that already has three flights under its belt. This frequent flyer previously launched SpaceX's Demo-2 mission, which sent two NASA astronauts to the space station this past summer, well as a communications satellite for the South Korean military and a batch of the companys own Starlink satellites.
Flying previously flown boosters has become commonplace for SpaceX, as the company continues to prove the Falcon 9's reliability. In fact, CRS-21 marks the 24th flight of 2020 for SpaceX, with the majority of those missions having flown on veteran rockets rather than brand-new ones.
To date, SpaceX has successfully landed its first-stage boosters 67 times. Now that the company has two fully operational drone-ship landing platforms "Of Course I Still Love You" and "Just Read the Instructions" in Florida, its able to launch (and land) more rockets. "Of Course I Still Love You" is already at the recovery zone waiting for its turn to catch B1058 when it returns to Earth shortly after liftoff.
Weather was a concern for SpaceX going into the weekend. Forecasts predicted iffy weather for a Saturday launch attempt, with the 45th Weather Squadron predicting a 50% chance of favorable conditions for liftoff. The primary concerns were thick clouds and cumulus clouds. The backup attempt on Sunday looks much better, with the forecast improving to 70% favorable on that day.
If all goes as planned, the Dragon will arrive at the station and dock at the Harmony modules space-facing port just over 24 hours after it blasts off.
Editor's note: This story was updated at 8:22 a.m. EST to include SpaceX's launch delay to Sunday, Dec. 6, due to bad weather.
Follow Amy Thompson on Twitter @astrogingersnap. Follow us on Twitter @Spacedotcom or Facebook.
See the article here:
Tissue chips and organoids: SpaceX is launching lots of science to space for NASA on Sunday - Space.com
- Science fiction turned reality? Stem cell therapy set to repair child's heart - Ynetnews - January 5th, 2025
- Cardiac stem cell biology: a glimpse of the past, present, and future - PMC - December 27th, 2024
- Secretome Therapeutics Closes $20.4 Million Financing Round to Advance Cardiomyopathy and Heart Failure Therapies - Business Wire - November 29th, 2024
- Developing the Cell-Based Therapies of the Future - University of Miami - November 15th, 2024
- Advancing heart stem cell therapy - UHN Foundation - November 15th, 2024
- Heart defects affect 40,000 US babies every year but cutting edge AI and stem cell tech will save lives and even cure them in the womb - New York... - November 15th, 2024
- Science Is Finding Ways to Regenerate Your Heart - The Wall Street Journal - November 6th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 21st, 2024
- USC launches collaboration with StemCardia to advance heart regeneration therapies - University of Southern California - October 13th, 2024
- The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish - Nature.com - September 3rd, 2024
- Opthea Announces Results of the A$55.9m (US$36.9m¹) Retail Entitlement Offer - July 16th, 2024
- Benitec Biopharma Reports Continued Durable Improvements in the Radiographic Assessments of Swallowing Efficiency and the Subject-Reported Outcome... - July 16th, 2024
- AstraZeneca Closes Acquisition of Amolyt Pharma - July 16th, 2024
- Addex Presents Positive Results from GABAB PAM Cough Program at the Thirteenth London International Cough Symposium (13th LICS) - July 16th, 2024
- Lexeo Therapeutics Announces Positive Interim Phase 1/2 Clinical Data of LX2006 for the Treatment of Friedreich Ataxia Cardiomyopathy - July 16th, 2024
- ANI Pharmaceuticals Announces the FDA Approval and Launch of L-Glutamine Oral Powder - July 16th, 2024
- MediWound Announces $25 Million Strategic Private Placement Financing - July 16th, 2024
- Atsena Therapeutics Appoints Joseph S. Zakrzewski as Board Chair - July 16th, 2024
- ASLAN Pharmaceuticals Announces Receipt of Nasdaq Delisting Determination; Has Determined Not to Appeal - July 16th, 2024
- Kraig Biocraft Laboratories Completes Phase One of its Spider Silk Production Facility Expansion - July 16th, 2024
- Pliant Therapeutics Announces Positive Long-Term Data from the INTEGRIS-PSC Phase 2a Trial Demonstrating Bexotegrast was Well Tolerated at 320 mg with... - July 16th, 2024
- Oncternal Announces Enrollment Completed and Dosing Initiated for Sixth Dose Cohort of Phase 1/2 Study of ONCT-534 for the Treatment of R/R Metastatic... - July 16th, 2024
- Rectify Pharmaceuticals Appoints Bharat Reddy as Chief Business Officer - July 16th, 2024
- Spectral AI Continues Support of Naked Short Selling Inquiry - July 16th, 2024
- Milestone Pharmaceuticals Refreshes Board of Directors - July 16th, 2024
- New Published Data Highlights Potential Cost-Savings of INPEFA® (sotagliflozin) for Heart Failure - July 16th, 2024
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 21st, 2023
- Cardiac stem cells: Current knowledge and future prospects - April 13th, 2023
- Stem cell therapies in cardiac diseases: Current status and future ... - April 13th, 2023
- Stem Cell and Regenerative Biology | Johns Hopkins Heart and Vascular ... - April 13th, 2023
- Center for Regenerative Biotherapeutics - Cardiac Regeneration - April 13th, 2023
- MAGENTA THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 25th, 2023
- CAREDX, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 1st, 2023
- A Possible Connection between Mild Allergic Airway Responses and Cardiovascular Risk Featured in Toxicological Sciences - Newswise - February 4th, 2023
- Baby's life saved by surgeon who carried out world's first surgery ... - December 25th, 2022
- An organoid model of colorectal circulating tumor cells with stem cell ... - December 25th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - December 1st, 2022
- Stem-cell niche - Wikipedia - December 1st, 2022
- Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine - October 13th, 2022
- Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance - October 13th, 2022
- Scientists Spliced Human Brain Tissue Into The Brains of Baby Rats - ScienceAlert - October 13th, 2022
- Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution | Communications Biology - Nature.com - October 13th, 2022
- Global Synthetic Stem Cells Market Is Expected To Reach Around USD 42 Million By 2025 - openPR - October 13th, 2022
- Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -... - October 13th, 2022
- Regenerative Medicine For Heart Diseases: How It Is Better Than Conventional Treatments | TheHealthSite.co - TheHealthSite - October 5th, 2022
- 'Love hormone' oxytocin could help reverse damage from heart attacks via cell regeneration - Study Finds - October 5th, 2022
- Recapitulating Inflammation: How to Use the Colon Intestine-Chip to Study Complex Mechanisms of IBD - Pharmaceutical Executive - September 27th, 2022
- Adult Stem Cells // Center for Stem Cells and Regenerative Medicine ... - September 19th, 2022
- CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular... - September 19th, 2022
- Kite's CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and... - September 19th, 2022
- Neural crest - Wikipedia - September 3rd, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 3rd, 2022
- Discover the Mental and Physical Health Benefits of Fasting - Intelligent Living - September 3rd, 2022
- Heart Association fellowship to support research - Binghamton - August 26th, 2022
- Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration | Communications Biology -... - August 26th, 2022
- High intensity interval training protects the heart against acute myocardial infarction through SDF-1a, CXCR4 receptors and c-kit levels - Newswise - August 26th, 2022
- Yale University: Uncovering New Approaches to a Common Inherited Heart Disorder | India Education - India Education Diary - August 10th, 2022
- Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery | International Journal of Obesity -... - August 10th, 2022
- Pigs died after heart attacks. Scientists brought their cells back to life. - Popular Science - August 10th, 2022
- Protocol for a Nested, Retrospective Study of the Australian Placental Transfusion Study Cohort - Cureus - August 10th, 2022
- Autologous Cell Therapy Market Size to Grow by USD 4.11 billion, Bayer AG and Brainstorm Cell Therapeutics Inc. Among Key Vendors - Technavio - PR... - August 2nd, 2022
- UTSW researcher part of team awarded $36 million heart research grant - The Dallas Morning News - August 2nd, 2022
- Buffalo center fuels research that can save your life from heart disease and stroke - Buffalo News - August 2nd, 2022
- Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -... - July 25th, 2022
- NASA's Solution to Stem Cell Production is Out of this World - BioSpace - July 25th, 2022
- Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com - July 25th, 2022
- 'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek - July 25th, 2022
- EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews - July 25th, 2022
- Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema - July 25th, 2022
- Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire - July 25th, 2022
- Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK - July 25th, 2022
- Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth - July 16th, 2022
- Pneumonia and Heart Disease: What You Should Know - Healthline - July 16th, 2022
- Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today - July 16th, 2022
- Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal - July 16th, 2022
- Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz - July 16th, 2022
- Mesenchymal stem cells: from roots to boost - PMC - July 8th, 2022
- New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison - July 8th, 2022
- Dr Victor Chang saved hundreds of lives. 31 years ago today, he was murdered. - Mamamia - July 8th, 2022
- Exosome Therapeutics Market Research Report Size, Share, New Trends and Opportunity, Competitive Analysis and Future Forecast Designer Women -... - July 8th, 2022