Types of Stem Cell and Bone Marrow Transplants – American Cancer Society
By daniellenierenberg
Stem cell transplants are used to give back stem cells when the bone marrow has been destroyed by disease, chemotherapy (chemo), or radiation. Depending on where the stem cells come from, the transplant procedure may be called:
They can all be called hematopoietic stem cell transplants.
In a typical stem cell transplant for cancer, very high doses of chemo are used, sometimes along with radiation therapy, to try to kill all the cancer cells. This treatment also kills the stem cells in the bone marrow. This is called myeloablation or myeloablative therapy. Soon after treatment, stem cells are given (transplanted) to replace those that were destroyed. The replacement stem cells are given into a vein, much like ablood transfusion. The goal is that over time, the transplanted cells settle in the bone marrow, begin to grow and make healthy blood cells. This process is called engraftment.
There are 2 main types of transplants. They are named based on who donates the stem cells.
In this type of transplant, the first step is to remove or harvest your own stem cells. Your stem cells are removed from either your bone marrow or your blood, and then frozen. (You can learn more about this process at Whats It Like to Donate Stem Cells?) After you get high doses of chemo and/or radiation as your myeloablative therapy, the stem cells are thawed and given back to you.
Benefits of autologous stem cell transplant: One advantage of autologous stem cell transplant is that youre getting your own cells back. When you get your own stem cells back, you dont have to worry about them (called the engrafted cells or the graft) being rejected by your body.
Risks of autologous stem cell transplant: The grafts can still fail, which means the transplanted stem cells dont go into the bone marrow and make blood cells like they should. Also, autologous transplants cant produce the graft-versus-cancer effect. A possible disadvantage of an autologous transplant is that cancer cells might be collected along with the stem cells and then later put back into your body. Another disadvantage is that your immune system is the same as it was before your transplant. This means the cancer cells were able to escape attack from your immune system before, and may be able to do so again.
This kind of transplant is mainly used to treat certain leukemias, lymphomas, and multiple myeloma. Its sometimes used for other cancers, like testicular cancer and neuroblastoma, and certain cancers in children. Doctors can use autologous transplants for other diseases, too, like systemic sclerosis, multiple sclerosis (MS), and systemic lupus erythematosis (lupus).
To help prevent any remaining cancer cells from being transplanted along with stem cells, some centers treat the stem cells before theyre given back to the patient. This may be called purging. While this might work for some patients, there haven't been enough studies yet to know if this is really a benefit. A possible downside of purging is that some normal stem cells can be lost during this process. This may cause your body to take longer to start making normal blood cells, and you might have very low and unsafe levels of white blood cells or platelets for a longer time. This could increase the risk of infections or bleeding problems.
Another treatment to help kill cancer cells that might be in the returned stem cells involves giving anti-cancer drugs after the transplant. The stem cells are not treated. After transplant, the patient gets anti-cancer drugs to get rid of any cancer cells that may be in the body. This is called in vivo purging. For instance, lenalidomide (Revlimid) may be used in this way for multiple myeloma. The need to remove cancer cells from transplanted stem cells or transplant patients and the best way to do it continues to be researched.
Doing 2 autologous transplants in a row is known as a tandem transplant or a double autologous transplant. In this type of transplant, the patient gets 2 courses of high-dose chemo as myeloablative therapy, each followed by a transplant of their own stem cells. All of the stem cells needed are collected before the first high-dose chemo treatment, and half of them are used for each transplant. Usually, the 2 courses of chemo are given within 6 months. The second one is given after the patient recovers from the first one.
Tandem transplants have become the standard of care for certain cancers. High-risk types of the childhood cancer neuroblastoma and adult multiple myeloma are cancers where tandem transplants seem to show good results. But doctors dont always agree that these are really better than a single transplant for certain cancers. Because this treatment involves 2 transplants, the risk of serious outcomes is higher than for a single transplant.
Sometimes an autologous transplant followed by an allogeneic transplant might also be called a tandem transplant. (See Mini-transplants below.)
Allogeneic stem cell transplants use donor stem cells. In the most common type of allogeneic transplant, the stem cells come from a donor whose tissue type closely matches yours. (This is discussed in Matching patients and donors.) The best donor is a close family member, usually a brother or sister. If you dont have a good match in your family, a donor might be found in the general public through a national registry. This is sometimes called a MUD (matched unrelated donor) transplant. Transplants with a MUD are usually riskier than those with a relative who is a good match.
An allogeneic transplant works about the same way as an autologous transplant. Stem cells are collected from the donor and stored or frozen. After you get high doses of chemo and/or radiation as your myeloablative therapy, the donor's stem cells are thawed and given to you.
Blood taken from the placenta and umbilical cord of newborns is a type of allogeneic transplant. This small volume of cord blood has a high number of stem cells that tend to multiply quickly. Cord blood transplants are done for both adults and children. By 2017, an estimated 700,000 units (batches) of cord blood had been donated for public use. And, even more have been collected for private use. In some studies, the risk of a cancer not going away or coming back after a cord blood transplant was less than after an unrelated donor transplant.
Benefits of allogeneic stem cell transplant: The donor stem cells make their own immune cells, which could help kill any cancer cells that remain after high-dose treatment. This is called the graft-versus-cancer or graft-versus-tumor effect. Other advantages are that the donor can often be asked to donate more stem cells or even white blood cells if needed, and stem cells from healthy donors are free of cancer cells.
Risks of allogeneic stem cell transplants: The transplant, or graft, might not take that is, the transplanted donor stem cells could die or be destroyed by the patients body before settling in the bone marrow. Another risk is that the immune cells from the donor may not just attack the cancer cells they could attack healthy cells in the patients body. This is called graft-versus-host disease. There is also a very small risk of certain infections from the donor cells, even though donors are tested before they donate. A higher risk comes from infections you had previously, and which your immune system has had under control. These infections may surface after allogeneic transplant because your immune system is held in check (suppressed) by medicines called immunosuppressive drugs. Such infections can cause serious problems and even death.
Allogeneic transplant is most often used to treat certain types of leukemia, lymphomas, multiple myeloma, myelodysplastic syndrome, and other bone marrow disorders such as aplastic anemia.
For some people, age or certain health conditions make it more risky to do myeloablative therapy that wipes out all of their bone marrow before a transplant. For those people, doctors can use a type of allogeneic transplant thats sometimes called a mini-transplant. Your doctor might refer to it as a non-myeloablative transplant or mention reduced-intensity conditioning (RIC). Patients getting a mini transplant typically get lower doses of chemo and/or radiation than if they were getting a standard myeloablative transplant. The goal in the mini-transplant is to kill some of the cancer cells (which will also kill some of the bone marrow), and suppress the immune system just enough to allow donor stem cells to settle in the bone marrow.
Unlike the standard allogeneic transplant, cells from both the donor and the patient exist together in the patients body for some time after a mini-transplant. But slowly, over the course of months, the donor cells take over the bone marrow and replace the patients own bone marrow cells. These new cells can then develop an immune response to the cancer and help kill off the patients cancer cells the graft-versus-cancer effect.
One advantage of a mini-transplant is that it uses lower doses of chemo and/or radiation. And because the stem cells arent all killed, blood cell counts dont drop as low while waiting for the new stem cells to start making normal blood cells. This makes it especially useful for older patients and those with other health problems. Rarely, it may be used in patients who have already had a transplant.
Mini-transplants treat some diseases better than others. They may not work well for patients with a lot of cancer in their body or people with fast-growing cancers. Also, although there might be fewer side effects from chemo and radiation than those from a standard allogeneic transplant, the risk of graft-versus-host disease is the same. Some studies have shown that for some cancers and some other blood conditions, both adults and children can have the same kinds of results with a mini-transplant as compared to a standard transplant.
This is a special kind of allogeneic transplant that can only be used when the patient has an identical sibling (twin or triplet) someone who has the exact same tissue type. An advantage of syngeneic stem cell transplant is that graft-versus-host disease will not be a problem. Also, there are no cancer cells in the transplanted stem cells, as there might be in an autologous transplant.
A disadvantage is that because the new immune system is so much like the recipients immune system, theres no graft-versus-cancer effect. Every effort must be made to destroy all the cancer cells before the transplant is done to help keep the cancer from coming back.
Improvements have been made in the use of family members as donors. This kind of transplant is called ahalf-match (haploidentical) transplant for people who dont have fully matching or identical family member. This can be another option to consider, along with cord blood transplant and matched unrelated donor (MUD) transplant.
If possible, it is very important that the donor and recipient are a close tissue match to avoid graft rejection. Graft rejection happens when the recipients immune system recognizes the donor cells as foreign and tries to destroy them as it would a bacteria or virus. Graft rejection can lead to graft failure, but its rare when the donor and recipient are well matched.
A more common problem is that when the donor stem cells make their own immune cells, the new cells may see the patients cells as foreign and attack their new home. This is called graft-versus-host disease. (See Stem Cell Transplant Side Effects for more on this). The new, grafted stem cells attack the body of the person who got the transplant. This is another reason its so important to find the closest match possible.
Many factors play a role in how the immune system knows the difference between self and non-self, but the most important for transplants is the human leukocyte antigen (HLA) system. Human leukocyte antigens are proteins found on the surface of most cells. They make up a persons tissue type, which is different from a persons blood type.
Each person has a number of pairs of HLA antigens. We inherit them from both of our parents and, in turn, pass them on to our children. Doctors try to match these antigens when finding a donor for a person getting a stem cell transplant.
How well the donors and recipients HLA tissue types match plays a large part in whether the transplant will work. A match is best when all 6 of the known major HLA antigens are the same a 6 out of 6 match. People with these matches have a lower chance of graft-versus-host disease, graft rejection, having a weak immune system, and getting serious infections. For bone marrow and peripheral blood stem cell transplants, sometimes a donor with a single mismatched antigen is used a 5 out of 6 match. For cord blood transplants a perfect HLA match doesnt seem to be as important, and even a sample with a couple of mismatched antigens may be OK.
Doctors keep learning more about better ways to match donors. Today, fewer tests may be needed for siblings, since their cells vary less than an unrelated donor. But to reduce the risks of mismatched types between unrelated donors, more than the basic 6 HLA antigens may be tested. For example, sometimes doctors to try and get a 10 out of 10 match. Certain transplant centers now require high-resolution matching, which looks more deeply into tissue types and allow more specific HLA matching.
There are thousands of different combinations of possible HLA tissue types. This can make it hard to find an exact match. HLA antigens are inherited from both parents. If possible, the search for a donor usually starts with the patients brothers and sisters (siblings), who have the same parents as the patient. The chance that any one sibling would be a perfect match (that is, that you both received the same set of HLA antigens from each of your parents) is 1 out of 4.
If a sibling is not a good match, the search could then move on to relatives who are less likely to be a good match parents, half siblings, and extended family, such as aunts, uncles, or cousins. (Spouses are no more likely to be good matches than other people who are not related.) If no relatives are found to be a close match, the transplant team will widen the search to the general public.
As unlikely as it seems, its possible to find a good match with a stranger. To help with this process, the team will use transplant registries, like those listed here. Registries serve as matchmakers between patients and volunteer donors. They can search for and access millions of possible donors and hundreds of thousands of cord blood units.
Be the Match (formerly the National Marrow Donor Program)Toll-free number: 1-800-MARROW-2 (1-800-627-7692)Website: http://www.bethematch.org
Blood & Marrow Transplant Information NetworkToll-free number: 1-888-597-7674Website: http://www.bmtinfonet.org
Depending on a persons tissue typing, several other international registries also are available. Sometimes the best matches are found in people with a similar racial or ethnic background. When compared to other ethnic groups, white people have a better chance of finding a perfect match for stem cell transplant among unrelated donors. This is because ethnic groups have differing HLA types, and in the past there was less diversity in donor registries, or fewer non-White donors. However, the chances of finding an unrelated donor match improve each year, as more volunteers become aware of registries and sign up for them.
Finding an unrelated donor can take months, though cord blood may be a little faster. A single match can require going through millions of records. Also, now that transplant centers are more often using high-resolution tests, matching is becoming more complex. Perfect 10 out of 10 matches at that level are much harder to find. But transplant teams are also getting better at figuring out what kinds of mismatches can be tolerated in which particular situations that is, which mismatched antigens are less likely to affect transplant success and survival.
Keep in mind that there are stages to this process there may be several matches that look promising but dont work out as hoped. The team and registry will keep looking for the best possible match for you. If your team finds an adult donor through a transplant registry, the registry will contact the donor to set up the final testing and donation. If your team finds matching cord blood, the registry will have the cord blood sent to your transplant center.
Read more:
Types of Stem Cell and Bone Marrow Transplants - American Cancer Society
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
- Vericel Announces FDA Approval of NexoBrid for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- Codexis Publishes FY2023 Sustainability Disclosures - August 19th, 2024
- MediWound Announces U.S. Food and Drug Administration Approval of NexoBrid® for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- First Successful Paediatric Allogeneic Bone Marrow Transplant In Bengaluru; Know All About The Procedure - Onlymyhealth - August 4th, 2024
- Is Stem Cell Transplant Often The Only Treatment Option For Blood Cancer Patients? Why So? - News18 - June 2nd, 2024
- This Swedish startup wants to reduce the cost, and controversy, around stem cell production - TechCrunch - March 10th, 2024
- Bone Marrow Transplantation | Johns Hopkins Medicine - December 20th, 2023
- Mansour bin Zayed witnesses inauguration of ADSCC Bone Marrow Transplant & Cellular Therapy Congress 2023 - ZAWYA - November 26th, 2023
- ADSCC Bone Marrow Transplant and Cellular Therapy Congress 2023 to take place in Abu Dhabi - ZAWYA - November 18th, 2023
- Orchard Therapeutics Reports First Quarter 2023 Financial Results and Announces Initiation of Rolling Submission for Biologics License Application of... - May 16th, 2023
- Family of 7-month-old in need of bone marrow transplant hosting donor registration event - CBS Pittsburgh - May 8th, 2023
- Anika Continues to Expand Addressable Market for Tactoset Injectable Bone Substitute with Additional 510(k) Clearance from FDA - Marketscreener.com - April 5th, 2023
- MorphoSys Completes Enrollment of Phase 3 MANIFEST-2 Study of Pelabresib in Myelofibrosis with Topline Results Expected by End of 2023 -... - April 5th, 2023
- VOR BIOPHARMA INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-K) - Marketscreener.com - March 25th, 2023
- BioRestorative Therapies to Seek FDA Approval to Expand the Clinical Application of BRTX-100 - Marketscreener.com - March 17th, 2023
- BioSenic delivers a new post-hoc analysis of its Phase III JTA-004 trial on knee osteo-arthritis with positive action on the most severely affected... - March 17th, 2023
- JASPER THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 9th, 2023
- For a range of unmet medical needs, India offers a fantastic opportunity to push cell and gene therapies: B .. - ETHealthWorld - March 9th, 2023
- NGM BIOPHARMACEUTICALS INC Management's Discussion and Analysis of Financial Condition and Results of Operations. (form 10-K) - Marketscreener.com - March 1st, 2023
- Bone health: Tips to keep your bones healthy - Mayo Clinic - January 27th, 2023
- Bone marrow drive held for military wife with cancer - January 27th, 2023
- Bone cancer - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Bone | Definition, Anatomy, & Composition | Britannica - January 19th, 2023
- Bone Definition & Meaning - Merriam-Webster - January 19th, 2023
- What Is Bone? | NIH Osteoporosis and Related Bone Diseases National ... - January 19th, 2023
- Anatomy of the Bone | Johns Hopkins Medicine - January 19th, 2023
- Bone Health: Is Eating Meat Healthy For Your Bones? - January 19th, 2023
- Bone Keeper | Deepwoken Wiki | Fandom - January 19th, 2023
- With blood and plasma donations in short supply, uniting communities to give the gift of life - Toronto Star - January 3rd, 2023
- Side Effects of a Bone Marrow Transplant (Stem Cell Transplant) - December 25th, 2022
- 28-year-old cancer patient at Nebraska Medicine advocates for diversity in bone marrow registry - KMTV 3 News Now Omaha - December 17th, 2022
- Stem Cell Technologies and Applications Market Report 2022-2032 - Yahoo Finance - December 9th, 2022
- Fred Hutch at ASH: Global insights on AML outcomes, COVID-19 and cancer, CD19 CAR T-cell therapy updates, latest on precision oncology and more -... - December 9th, 2022
- Getting a Stem Cell or Bone Marrow Transplant - American Cancer Society - December 1st, 2022
- Woman, 41, With Bubbles In Her Urine Dismissed By Doctors. Turns Out To Have The Blood Cancer Multiple Myeloma. - SurvivorNet - December 1st, 2022
- Stem cell and bone marrow transplants - Cancer Research UK - November 22nd, 2022
- Donating Bone Marrow Experience | Be The Match - November 22nd, 2022
- Learn How to Donate Bone Marrow | Be The Match - October 29th, 2022
- Stem Cell Transplantation Program - DanaFarber Cancer Institute - October 29th, 2022
- A CRISPR Alternative for Correcting Mutations That Sensitize Cells to DNA Damage - The Scientist - October 13th, 2022