US FDA Approves Naxitamab for the Treatment of Neuroblastoma – OncoZine
By daniellenierenberg
The U.S. Food and Drug Administration (FDA) has approved naxitamab* (naxitamab-gqgk; Danyelza; Y-mAbs Therapeutics), a humanized form of the mouse antibody 3F8, in combination with granulocyte-macrophage colony-stimulating factor (GM-CSF), for the treatment of pediatric patients 1 year of age and older and adult patients with relapsed or refractory high-risk neuroblastoma in the bone or bone marrow who have demonstrated a partial response (PR), minor response (mR), or stable disease (SD) to prior therapy.[1]
A rare diseaseNeuroblastoma is a heterogeneous pediatric neoplasm that arises in the sympathetic nervous system. The disease is the most common extra-cranial solid tumor in infants and children, representing between 8%-10% of all childhood tumors. Overall, neuroblastoma accounts for approximately 15% of all cancer-related deaths in children. [1]
The clinical behavior of neuroblastoma is highly variable, with some tumors being easily treatable, resulting in near-uniform survival. The majority of tumors are, however, very aggressive, with a high risk of death. [2] Age, stage, and amplification of the MYCN oncogene are the most validated prognostic markers.[2]
The incidence of neuroblastoma is 10.2 cases per million children under 15 years of age. [3] In the United States, nearly 700 new cases are reported each year. While 90% of cases are diagnosed before the age of 5, approximately 30% of patients are diagnosed within the first year. The median age of diagnosis is 22 months. [4]
Neuroblastoma develops in very early forms of nerve cells that are usually found in a developing baby, which explains why children as young as newborns can develop this cancer.
The disease rarely presents in adolescence and adulthood, but outcomes are much poorer in this age group. There does not appear to be an increased prevalence among races, but there is a slight predilection for males (1.2:1).[4]
Neuroblastoma develops in a part of the peripheral nervous system called the sympathetic nervous system. Since some of the sympathetic nervous system cells are concentrated in the adrenal glands, which sit above the kidneys, neuroblastoma often starts growing there. Tumors typically begin in the belly, neck, chest, pelvis, or adrenal glands and can spread to other parts of the body, including the bones.
All patients are staged based on the International Neuroblastoma Staging System Committee (INSS) system, ranging from stage 1 through stage 4S. Based on this staging system, patients with stage 4 disease diagnosed after one year of age are classified in the high-risk category, where the neuroblastoma tumor cells have already metastasized to other sites in the body, such as the bone or bone marrow.
Essentially all patients who have tumors with many copies, or amplification, of the MYCN oncogene also have high-risk disease, even if they do not have evidence of the tumor having spread.
Although children with a family history of neuroblastoma may have a higher risk for developing this disease, this factor accounts for only 1-2 % of all cases of neuroblastoma. The vast majority of children who develop the tumor, do not have a family history of the same.
Mechanism of actionIn simple terms, naxitamab, conceived and developed by physician-scientist Nai-Kong Cheung, M.D., Ph.D., a medical oncologist at Memorial Sloan Kettering ** who heads the organizations neuroblastoma program, detects neuroblastoma cells that have survived chemo- or radiation therapy by attaching to GD2, a ganglioside that is ubiquitously expressed in the plasma membrane of neuroblastoma and is shed into the circulation, after which the patients own immune system, especially white blood cells, can destroy the malignant neuroblastoma cells. [5]
In the late 1980s, investigators at Memorial Sloan Kettering started using 3F8 in combination with surgery and chemotherapy to treat patients diagnosed with neuroblastoma. The investigational treatment significantly improved cure rates for pediatric patients with high-risk disease.
Later, in 2007, Cheung and colleagues began developing a humanized form of 3F8 called Hu3F8. In August 2011 the researchers started a phase I study of Hu3F8 (NCT01419834). The study was designed to investigate the best and safest dose to give to patients.
Accelerated approval The new indication of naxitamab + GM-CSF is approved under accelerated approval regulation based on overall response rate and duration of response. Continued approval for this indication may be contingent upon verification and description of clinical benefits in a confirmatory trial.
Naxitamab is a humanized, monoclonal antibody that targets the ganglioside GD2, which is highly expressed in various neuroectoderm-derived tumors and sarcomas. The drug is administered to patients three times per week in an outpatient setting and the treatment is repeated every four weeks. The product has received Priority Review, Orphan Drug, Breakthrough Therapy, and Rare Pediatric Disease designations from the FDA.
Much needed treatmentOver the last decades, the development of novel treatments for pediatric cancers has been successful. For example, the five-year survival rates for children diagnosed with cancer in the late 1980s approaches 70%. For some types of localized embryonal tumors, including retinoblastoma and Wilms tumor, the cure rates approach or exceed 90%.
However, for every two children who survive today, one child still succumbs to their disease. And for some childhood cancers, such as neuroblastoma and certain types of brain cancer, the prognosis remains poor. Hence, despite the observed successes, there remained a major unmet medical need remains patients diagnosed with neuroblastoma. The development and subsequent approval of naxitamab may be one much-needed treatment options for these patients. [6]
[The approval represents a major milestone] for children living with refractory/relapsed high-risk neuroblastoma, noted Thomas Gad, founder, Chairman, and President of Y-mAbs Therapeutics, whose own daughters neuroblastoma was successfully treated with 3F8 at Memorial Sloan Kettering more than a decade ago.
In 2015, Memorial Sloan Kettering licensed Hu3F8 to Y-mAbs Therapeutics tpo expand the clinical trial and development program and manufacturing of naxitamab.
Its very exciting to see this treatment go from being an experimental therapy used at my daughters bedside to now being FDA approved, Gad added.
We believe that naxitamab in combination with GM-CSF is a much-needed treatment for patients with relapsed/refractory high-risk neuroblastoma in the bone or bone marrow who have historically not had approved treatments available. This approval of Y-mAbs first BLA represents a key step in working towards our mission of becoming a world leader in developing better and safer antibody-based oncology products addressing unmet pediatric and adult medical needs, said Claus Moller, Y-mAbs Therapeutics Chief Executive Officer.
Clinical trialsThe FDA approval of naxitamab is supported by clinical evidence from two pivotal studies in patients with high-risk neuroblastoma with refractory or relapsed disease.
In these clinical studies, naxitamab appears to be well tolerated with few discontinuations of treatment. The observed treatment-related adverse events were clinically manageable.
The efficacy of naxitamab in combination with GM-CSF was evaluated in two open-label, single-arm trials in patients with high-risk neuroblastoma with refractory or relapsed disease in the bone or bone marrow.
Both trials included patients with relapsed or refractory neuroblastoma in the bone marrow or bone. Participating patients received a 3 mg/kg of naxitamab intravenously on days one, three, and five of each four-week cycle, in addition to GM-CSF subcutaneously, or under the skin, at varying doses throughout the cycle. Patients were allowed to receive preplanned radiation in specific areas based on which trial they were enrolled in.
Efficacy outcomes included overall response rate (ORR) according to the revised International Neuroblastoma Response Criteria (INRC), as determined by independent pathology and imaging review and confirmed by at least one subsequent assessment. An additional efficacy outcome measure was the duration of response (DOR).
Study 201In the first study (Study 201; NCT03363373), a multicenter open-label, single-arm trial. researchers evaluated the combination of naxitamab in combination with GM-CSF in a subpopulation of patients who had refractory or relapsed high-risk neuroblastoma in the bone or bone marrow and demonstrated a partial response, minor response, or stable disease to prior therapy. Patients with progressive disease were excluded.
Of the 22 patients included in the efficacy analysis, 64% had refractory disease and 36% had relapsed disease. The median age was 5 years (range 3 to 10 years), 59% were male; 45% were White, 50% were Asian and 5% were Black.
MYCN amplification was present in 14% of patients and 86% of patients were International Neuroblastoma Staging System (INSS) stage 4 at the time of diagnosis. Disease sites included 59% in the bone only, 9% in bone marrow only, and 32% in both. Prior therapies included surgery (91%), chemotherapy (95%), radiation (36%), autologous stem cell transplant (ASCT) (18%), and anti-GD2 antibody treatment (18%).
Study 12-230The second study (Study 12-230; NCT01757626), a single-center, open-label, single-arm clinical trial, included a subpopulation of patients who had relapsed or refractory high-risk neuroblastoma in bone or bone marrow and demonstrated a partial response, minor response, or stable disease to prior therapy. In this study patients with progressive disease were excluded.
Participating patients received at least one systemic therapy to treat disease outside of the bone or bone marrow prior to enrollment. They were required to have received at least one dose of naxitamab at a dose of 3 mg/kg or greater per infusion and have evaluable disease at baseline according to independent review per the revised INRC. Radiation to non-target bony lesions and soft tissue lesions was permitted at the investigators discretion (assessment of response excluded sites that received radiation).
Of the 38 patients included in the efficacy analysis, 55% had relapsed neuroblastoma and 45% had refractory disease; 50% were male, the median age was 5 years (range 2 to 23 years), 74% were White, 8% Asian and 5% were Black, 5% Native American/American Indian/Alaska Native, 3% other races and 5% was not available. MYCN-amplification was present in 16% of patients and most patients were International Neuroblastoma Staging System (INSS) stage 4 (95%).
Fifty percent (50%) of patients had disease involvement in the bone only, 11% only in bone marrow, and 39% in both. Prior therapies included surgery (100%), chemotherapy (100%), radiation (47%), autologous stem cell transplant (ASCT) (42%), and anti-GD2 antibody treatment (58%)
Adverse eventsThe most common adverse reactions (incidence 25% in either trial) in patients receiving naxitamab were infusion-related reactions, pain, tachycardia, vomiting, cough, nausea, diarrhea, decreased appetite, hypertension, fatigue, erythema multiforme, peripheral neuropathy, urticaria, pyrexia, headache, injection site reaction, edema, anxiety, localized edema, and irritability.
The most common Grade 3 or 4 laboratory abnormalities (5% in either trial) were decreased lymphocytes, decreased neutrophils, decreased hemoglobin, decreased platelet count, decreased potassium, increased alanine aminotransferase, decreased glucose, decreased calcium, decreased albumin, decreased sodium, and decreased phosphate.
Boxed warningThe prescribing information for naxitamab contains a Boxed Warning which states that the drug can cause serious infusion-related reactions and neurotoxicity, including severe neuropathic pain, transverse myelitis, and reversible posterior leukoencephalopathy syndrome (RPLS). Hence, to mitigate these risks, patients should receive premedication prior to each naxitamab infusion and be closely monitored during and for at least two hours following completion of each infusion.
Note* Also known as humanized 3F8 or Hu3F8,** Researchers at Memorial Sloan Kettering Cancer Center (MSK) developed naxitamab, which is exclusively licensed by MSK to Y-mAbs. As a result of this licensing arrangement, MSK has institutional financial interests related to the compound and Y-mAbs.
Clinical trialsHumanized 3F8 Monoclonal Antibody (Hu3F8) in Patients With High-Risk Neuroblastoma and GD2-Positive Tumors NCT01419834Humanized 3F8 Monoclonal Antibody (Hu3F8) When Combined With Interleukin-2 in Patients With High-Risk Neuroblastoma and GD2-positive Solid Tumors NCT01662804Humanized Anti-GD2 Antibody Hu3F8 and Allogeneic Natural Killer Cells for High-Risk Neuroblastoma NCT02650648Study of the Safety and Efficacy of Humanized 3F8 Bispecific Antibody (Hu3F8-BsAb) in Patients With Relapsed/Refractory Neuroblastoma, Osteosarcoma and Other Solid Tumor Cancers NCT03860207Combination Therapy of Antibody Hu3F8 With Granulocyte- Macrophage Colony Stimulating Factor (GM-CSF) in Patients With Relapsed/Refractory High-Risk Neuroblastoma NCT01757626Naxitamab for High-Risk Neuroblastoma Patients With Primary Refractory Disease or Incomplete Response to Salvage Treatment in Bone and/or Bone Marrow NCT03363373
Highlights of prescription informationNaxitamab (naxitamab-gqgk; Danyelza; Y-mAbs Therapeutics) [Prescribing Information]
Reference[1] Park JR, Eggert A, Caron H. Neuroblastoma: biology, prognosis, and treatment. Hematol Oncol Clin North Am. 2010 Feb;24(1):65-86. doi: 10.1016/j.hoc.2009.11.011. PMID: 20113896.[2] Modak S, Cheung NK. Neuroblastoma: Therapeutic strategies for a clinical enigma. Cancer Treat Rev. 2010 Jun;36(4):307-17. doi: 10.1016/j.ctrv.2010.02.006. Epub 2010 Mar 12. PMID: 20227189.[3] Maris JM. Recent advances in neuroblastoma. N Engl J Med. 2010 Jun 10;362(23):2202-11. doi: 10.1056/NEJMra0804577. PMID: 20558371; PMCID: PMC3306838.[4] Esiashvili N, Anderson C, Katzenstein HM. Neuroblastoma. Curr Probl Cancer. 2009 Nov-Dec;33(6):333-60. doi: 10.1016/j.currproblcancer.2009.12.001. PMID: 20172369.[5] Balis FM, Busch CM, Desai AV, Hibbitts E, Naranjo A, Bagatell R, Irwin M, Fox E. The ganglioside GD2 as a circulating tumor biomarker for neuroblastoma. Pediatr Blood Cancer. 2020 Jan;67(1):e28031. doi: 10.1002/pbc.28031. Epub 2019 Oct 14. PMID: 31612589.[6] Balis FM. The Challenge of Developing New Therapies for Childhood Cancers. Oncologist. 1997;2(1):I-II. PMID: 10388032.
Featured image: A close up of a newborn babys foot in the neonatal unit in a hospital. Photo courtesy: 2016 2020 Fotolia/Adobe. Used with permission
See the article here:
US FDA Approves Naxitamab for the Treatment of Neuroblastoma - OncoZine
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to ... - November 15th, 2024
- Hematopoietic Stem Cells and Their Niche in Bone Marrow - November 15th, 2024
- Bone Marrow Transplant Program - Overview - Mayo Clinic - November 15th, 2024
- Bone Marrow Donors Can Be Hard to Find. One Company Is Turning to Cadavers - WIRED - November 15th, 2024
- More stem cells for sickle cell gene therapy readied with motixafortide - Sickle Cell Disease News - November 15th, 2024
- Skull bone marrow expands throughout life and remains healthy during aging, researchers discover - Medical Xpress - November 15th, 2024
- Adult skull bone marrow is an expanding and resilient haematopoietic reservoir - Nature.com - November 15th, 2024
- Evaluation of standard fludarabine dosing and corresponding exposures in infants and young children undergoing hematopoietic cell transplantation -... - November 15th, 2024
- Stem cells grown in space show super powers but theres a catch - Study Finds - November 15th, 2024
- Getting a Stem Cell or Bone Marrow Transplant - October 21st, 2024
- Acquisition of durable insulin-producing cells from human adipose tissue-derived mesenchymal stem cells as a foundation for cell- based therapy of... - October 21st, 2024
- 1.5 Lakh Indians Register To Save Lives: Join the Mission To Fight Blood Cancer - The Better India - October 21st, 2024
- How Stem Cell and Bone Marrow Transplants Are Used to Treat Cancer - October 13th, 2024
- Stem Cell (Bone Marrow) Transplants - MD Anderson Cancer Center - October 13th, 2024
- Donating Bone Marrow and Stem Cells: The Process and What To Expect - October 13th, 2024
- What to expect as a stem cell or bone marrow donor - October 13th, 2024
- Structural organization of the bone marrow and its role in ... - October 13th, 2024
- Stem cell donor from down the road saved my life after global search - BBC.com - September 23rd, 2024
- Awaiting the call: family hopes to find blood stem cell donor - Claremont Courier - September 23rd, 2024
- Michigan woman one of first in world to successfully receive bone marrow from deceased donor - WDIV ClickOnDetroit - September 23rd, 2024
- Next-generation stem cell transplant: Revolutionizing a lifesaving cancer therapy - The Business Journals - September 23rd, 2024
- Sophie's life was saved by a stranger. Some in her position have an 'unfair' disadvantage - SBS News - September 23rd, 2024
- What Are Leukemia and Lymphoma and How Are They Treated? - LVHN News - September 23rd, 2024
- Giralt on MDS Transplant Timing and Candidacy - Targeted Oncology - September 14th, 2024
- Aging is associated with functional and molecular changes in distinct hematopoietic stem cell subsets - Nature.com - September 14th, 2024
- A practical guide to therapeutic drug monitoring in busulfan: recommendations from the Pharmacist Committee of the European Society for Blood and... - September 14th, 2024
- ISU researcher blown away by blood cell replication discovery - Radio Iowa - September 14th, 2024
- Pausing biological clock could give boost to lab-produced blood stem cells - Phys.org - September 14th, 2024
- 9-year-old gets successful bone marrow transplant - The Times of India - September 14th, 2024
- Dr. Crandall: Stem Cell Treatment Heals the Heart - Newsmax - September 3rd, 2024
- Orion Corporation: Managers’ transactions – Hao Pan - August 19th, 2024
- BioCorRx Reports Business Update for the Second Quarter of 2024 - August 19th, 2024
- Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern, Eliminates... - August 19th, 2024
- Aligos Therapeutics Announces Reverse Stock Split - August 19th, 2024
- Lumos Pharma to Participate in H.C. Wainwright 26th Annual Global Investment Conference - August 19th, 2024
- Protect Pharmaceutical Corp. (PRTT) Announces New CEO and New Director; Moves to Finalize the Karinca Logistics Merger - August 19th, 2024
- OKYO Pharma Participates in H.C. Wainwright 4th Annual Ophthalmology Virtual Conference - August 19th, 2024
- CORRECTION – Tevogen Bio Reports Second Quarter 2024 Financial Results, Eliminates Doubt About Company’s Ability to Continue as a Going Concern,... - August 19th, 2024
- NurExone Biologic Achieves Key Milestone in Support of Robust Exosome Manufacturing Process - August 19th, 2024
- Silexion Therapeutics Ltd. and Moringa Acquisition Corp Announce Closing of their Business Combination - August 19th, 2024
- Vericel Announces FDA Approval of NexoBrid for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- Codexis Publishes FY2023 Sustainability Disclosures - August 19th, 2024
- MediWound Announces U.S. Food and Drug Administration Approval of NexoBrid® for the Treatment of Pediatric Patients with Severe Thermal Burns - August 19th, 2024
- First Successful Paediatric Allogeneic Bone Marrow Transplant In Bengaluru; Know All About The Procedure - Onlymyhealth - August 4th, 2024
- Is Stem Cell Transplant Often The Only Treatment Option For Blood Cancer Patients? Why So? - News18 - June 2nd, 2024
- This Swedish startup wants to reduce the cost, and controversy, around stem cell production - TechCrunch - March 10th, 2024
- Bone Marrow Transplantation | Johns Hopkins Medicine - December 20th, 2023
- Mansour bin Zayed witnesses inauguration of ADSCC Bone Marrow Transplant & Cellular Therapy Congress 2023 - ZAWYA - November 26th, 2023
- ADSCC Bone Marrow Transplant and Cellular Therapy Congress 2023 to take place in Abu Dhabi - ZAWYA - November 18th, 2023
- Orchard Therapeutics Reports First Quarter 2023 Financial Results and Announces Initiation of Rolling Submission for Biologics License Application of... - May 16th, 2023
- Family of 7-month-old in need of bone marrow transplant hosting donor registration event - CBS Pittsburgh - May 8th, 2023
- Anika Continues to Expand Addressable Market for Tactoset Injectable Bone Substitute with Additional 510(k) Clearance from FDA - Marketscreener.com - April 5th, 2023
- MorphoSys Completes Enrollment of Phase 3 MANIFEST-2 Study of Pelabresib in Myelofibrosis with Topline Results Expected by End of 2023 -... - April 5th, 2023
- VOR BIOPHARMA INC. Management's Discussion and Analysis of Financial Condition and Results of Operations (form 10-K) - Marketscreener.com - March 25th, 2023
- BioRestorative Therapies to Seek FDA Approval to Expand the Clinical Application of BRTX-100 - Marketscreener.com - March 17th, 2023
- BioSenic delivers a new post-hoc analysis of its Phase III JTA-004 trial on knee osteo-arthritis with positive action on the most severely affected... - March 17th, 2023
- JASPER THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 9th, 2023
- For a range of unmet medical needs, India offers a fantastic opportunity to push cell and gene therapies: B .. - ETHealthWorld - March 9th, 2023
- NGM BIOPHARMACEUTICALS INC Management's Discussion and Analysis of Financial Condition and Results of Operations. (form 10-K) - Marketscreener.com - March 1st, 2023
- Bone health: Tips to keep your bones healthy - Mayo Clinic - January 27th, 2023
- Bone marrow drive held for military wife with cancer - January 27th, 2023
- Bone cancer - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Bone | Definition, Anatomy, & Composition | Britannica - January 19th, 2023
- Bone Definition & Meaning - Merriam-Webster - January 19th, 2023
- What Is Bone? | NIH Osteoporosis and Related Bone Diseases National ... - January 19th, 2023
- Anatomy of the Bone | Johns Hopkins Medicine - January 19th, 2023
- Bone Health: Is Eating Meat Healthy For Your Bones? - January 19th, 2023
- Bone Keeper | Deepwoken Wiki | Fandom - January 19th, 2023
- With blood and plasma donations in short supply, uniting communities to give the gift of life - Toronto Star - January 3rd, 2023
- Side Effects of a Bone Marrow Transplant (Stem Cell Transplant) - December 25th, 2022
- 28-year-old cancer patient at Nebraska Medicine advocates for diversity in bone marrow registry - KMTV 3 News Now Omaha - December 17th, 2022
- Stem Cell Technologies and Applications Market Report 2022-2032 - Yahoo Finance - December 9th, 2022
- Fred Hutch at ASH: Global insights on AML outcomes, COVID-19 and cancer, CD19 CAR T-cell therapy updates, latest on precision oncology and more -... - December 9th, 2022
- Types of Stem Cell and Bone Marrow Transplants - American Cancer Society - December 1st, 2022
- Getting a Stem Cell or Bone Marrow Transplant - American Cancer Society - December 1st, 2022
- Woman, 41, With Bubbles In Her Urine Dismissed By Doctors. Turns Out To Have The Blood Cancer Multiple Myeloma. - SurvivorNet - December 1st, 2022
- Stem cell and bone marrow transplants - Cancer Research UK - November 22nd, 2022
- Donating Bone Marrow Experience | Be The Match - November 22nd, 2022
- Learn How to Donate Bone Marrow | Be The Match - October 29th, 2022
- Stem Cell Transplantation Program - DanaFarber Cancer Institute - October 29th, 2022