Waiting to Reprogram Your Cells? Don’t Hold Your Breath – Scientific American
By LizaAVILA
Guiding a recent tour of a Kyoto University lab, a staff member holds up a transparent container. Inside are tiny pale spheres, no bigger than peas, floating in a clear liquid. This is cartilage, explains the guide, Hiroyuki Wadahama. It was made here from human iPS cells.
A monitor attached to a nearby microscope shows a mass of pink and purple dots. This is the stuff from which the cartilage was grown: induced pluripotent stem cells, often called iPS cells. Scientists can create these seemingly magical cells from any cell in the body by introducing four genes, in essence turning back the cellular clock to an immature, nonspecialized state. The term pluripotent refers to the fact iPS cells can be reprogrammed to become any type of cell, from skin to liver to nerve cells. In this way they act like embryonic stem cells and share their revolutionary therapeutic potentialand as such, they could eliminate the need for using and then destroying human embryos. Also, iPS cells can proliferate infinitely.
They can also give rise, however, to potentially dangerous mutations, possibly including ones that lead to cancerous tumors. Thus, iPS cells are a double-edged swordtheir great promise is tempered by risk. Another problem is the high cost of treating a patient with his or her own newly reprogrammed cells. But now Japanese researchers are trying a different approach.
When Kyoto University researcher Shinya Yamanaka announced in 2006 that his lab had created iPS cells from mouse skin cells for the first time, biologists were stunned. In 2007, along with James Thomson of the University of WisconsinMadison, Yamanaka repeated the feat with human skin cells. Many hailed the opening of an entirely new field of personalized regenerative medicine. Need new liver cells? No problem. Patients could benefit from having their own cells reprogrammed into ones that could help treat disease, potentially eliminating the prospect of immune rejection. In 2012 Yamanaka shared the Nobel Prize in Physiology or Medicine with John Gurdon for discovering that mature cells can be converted to stem cells. By reprogramming human cells, scientists have created new opportunities to study diseases and develop methods for diagnosis and therapy, the Nobel judges wrote. To capitalize on the discovery, Kyoto University set up the $40-million Center for iPS Cell Research and Application (CiRA), which Yamanaka directs.
A decade after the Yamanaka teams groundbreaking discoveries, however, iPS cells have retreated from the headlines; to the layperson, progress seems scant. There has only been one clinical trial involving iPS cells, and it was halted after a transplant operation on just one patienta Japanese woman in her 70s with macular degeneration, a condition that can lead to blurry vision or partial blindness. Doctors at Kobe City Medical Center General Hospital used her skin cells to grow iPS cells, which were reprogrammed into retinal cells and implanted in her eye. The treatment stopped the degeneration but the trial was halted in 2015 because genetic mutations were detected in another batch of iPS cells intended for another patient. Regulatory changes, under which the Japanese government allowed the distribution of iPS cells for clinical use, also prompted researchers to switch the study to a more efficient process of using cells from third-party donors instead of using a patients own cells. The Japanese government has a lot of incentives to considerwere developing a new science, a new technology and also a new economic market, says CiRA spokesperson Peter Karagiannis. So theres the ethical issues, but theres also money to be made. How do we balance the two?
The Kobe clinical trial had a lot riding on it. And the setback followed a major stem cell scandal in which biologist Haruko Obokata of the Riken Center for Developmental Biology was found to have falsified data in studies, published in 2014, that claimed a new method of achieving pluripotency. Then, earlier this year, Yamanaka had to apologize at a news conference after it was discovered that a reagent used to create iPS cells at CiRA was mislabeled, which could mean the wrong reagent was used. Although the mix-up is being examined, the center has halted supplies of some of its iPS cells to researchers across Japan; the error also set back by a few years a CiRA project to produce clinical-grade platelets from iPS cells.
But Yamanaka says he remains focused on the bigger picture of iPS cells and is still optimistic they can not only help researchers but may be key to transformative clinical therapies. CiRA still has a bank of tens of millions of iPS cells that have already been reset and checked for safety, so they can be used in patient applications. In terms of regenerative medicine, things have gone quicker than I expected, Yamanaka says, adding, iPS cells have exceeded expectations because of their potential for disease modeling, which allows us to elucidate unknown disease mechanisms, and drug discovery.
Those hoping for quick clinical success should remember it takes time for revolutionary treatments to go from lab bench to bedside, says Andras Nagy, a stem cell researcher at Mount Sinai Hospitals LunenfeldTanenbaum Research Institute in Toronto, who has not been directly involved in Yamanakas work. If you fully appreciate the paradigm-shifting nature of iPS cells, tremendous progress has in fact been made over the past 10 years, says Nagy, who in 2009 established a method of creating stem cells without using viruses (which had initially been used to deliver reprogramming genes into targeted cells). By comparison, penicillin was discovered as an antibiotic in 1928, but it was not available in the clinic until the early 1940s.
Researchers in Japan are meanwhile using iPS cell technology to pave the way to better drugs. For instance, CiRAs Kohei Yamamizu recently reported developing a cellular model of the bloodbrain barrier made entirely from human iPS cells. It could become a useful tool for testing drugs for brain diseases.
All eyes, however, are back on Kobe City Medical Center General Hospital, which is resuming its retina trialthis time with iPS cells from donors instead of cells from patients themselves. Using CiRAs bank of iPS cells, there are significant time and cost savingsit could be one fifth the cost of cell preparation and patient transplant or less. The initial study, with its personalized approach, reportedly cost about $875,000 for just one patient. We plan to evaluate the efficacy of transplanting the [donor] cells and consider the feasibility of using this method as a routine treatment in the future, accessible to the wider society, study co-leader Masayo Takahashi of the RIKEN Center for Developmental Biology said at a February press conference in Kobe. Her husband Jun Takahashi, a researcher at CiRA, is also planning to use donor-derived iPS cells for a clinical applicationto help treat patients with Parkinsons disease.
Nagy admits the promise of personalized cell regeneration is probably too costly for mainstream use, and he believes genomic editingin which DNA is inserted or deletedis key to safe iPS cell implants. For his part, Yamanaka is cautiously optimistic about iPS cells as a therapeutic tool.
Regenerative medicine and drug discovery are the two key applications for iPS cells, Yamanaka says. With the use of iPS cell stock, we are now able to work quicker and cheaper, so thats the challenge going forward.
See the original post here:
Waiting to Reprogram Your Cells? Don't Hold Your Breath - Scientific American
- FDA Grants Orphan Drug Designation to IPS HEARTs GIVI-MPC Stem Cell Therapy for Becker Muscular Dystrophy - Business Wire - January 14th, 2025
- GMP-compliant iPS cell lines show widespread plasticity in a new set of differentiation workflows for cell replacement and cancer immunotherapy -... - January 14th, 2025
- Stem cells head to the clinic: treatments for cancer, diabetes and Parkinsons disease could soon be here - Nature.com - December 27th, 2024
- Exclusive: Cell therapy startup Shinobi adds Borges as science chief, Katz as top medical officer - Endpoints News - December 18th, 2024
- Sumitomo Chemical and Sumitomo Pharma to Establish Regenerative Medicine and Cell Therapy Joint Venture - - December 18th, 2024
- Shinobi Strengthens Leadership to Propel Scalable Immune-Evasive Cell Therapies to the Clinic - The Eastern Progress Online - December 18th, 2024
- BrightPath Bio and Cellistic Announces Process Development and Manufacturing Collaboration for Phase 1 Clinical Trial of iPSC-derived BCMA CAR-iNKT... - December 18th, 2024
- Induced Pluripotent Stem Cells: Problems and Advantages when Applying ... - December 9th, 2024
- How Minaris is Tackling the Scalability Challenge in Cell and Gene Therapy: A Conversation with CEO, Dr. Hiroto Bando - geneonline - November 29th, 2024
- Toward Personalized Cell Therapies by Using Stem Cells 2013: BioMed Research International - Wiley Online Library - November 15th, 2024
- Cell therapy for heart disease and therapeutic cloning: will embryos re-enter the stem cell race? - Genethique - November 15th, 2024
- Cutting-edge stem cell therapy proves safe, but will it ever be ... - AAAS - November 6th, 2024
- Induced pluripotent stem cell - Wikipedia - October 21st, 2024
- What are iPS cells? | For the Public | CiRA | Center for iPS Cell ... - October 21st, 2024
- Nobel Winner Shinya Yamanaka: Cell Therapy Is Very Promising For Cancer, Parkinsons, More - Forbes - October 13th, 2024
- iPSCs Manufacturing for Cell-Based Therapies: A Market Analysis of Cell Types, Therapeutic Applications, Ma... - WhaTech - August 4th, 2024
- Abu Dhabi Stem Cells Center partners with Japan-based Kyoto University and Rege Nephro - ZAWYA - January 14th, 2024
- Eterna Therapeutics Enters Into Option and License Agreement with Lineage Cell Therapeutics to Develop Hypoimmune Pluripotent Cell Lines for Multiple... - March 1st, 2023
- What is an Intrusion Prevention System? Definition ... - Fortinet - January 27th, 2023
- What is an IPS Monitor? Monitor Panel Types Explained ... - January 27th, 2023
- IPS panel - Wikipedia - January 27th, 2023
- Cell and gene therapy products: what is an ATMP? - The Niche - January 3rd, 2023
- Cell Therapy - an overview | ScienceDirect Topics - November 22nd, 2022
- Ayala Pharmaceuticals Reports Third Quarter 2022 Financial Results and Provides Corporate Update - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its Capsid Assembly Modulator, ALG-000184, at AASLD’s The Liver Meeting® 2022 - November 6th, 2022
- Correcting and Replacing: CinCor Reports Third Quarter Financial Results and Provides Corporate Update - November 6th, 2022
- NGM Bio Announces Poster Presentation Featuring Preclinical Characterization of NGM936 at Upcoming 2022 ASH Annual Meeting - November 6th, 2022
- Assembly Biosciences Presents New Data at AASLD The Liver Meeting® Highlighting Breadth of Virology Portfolio and Potential of Next-Generation Core... - November 6th, 2022
- CymaBay Therapeutics Presents Additional Analyses from Clinical Studies of Seladelpar for Patients with Primary Biliary Cholangitis at The Liver... - November 6th, 2022
- Immutep Announces Abstract Highlighting Eftilagimod Alpha Selected for SITC 2022 Annual Meeting Press Conference - November 6th, 2022
- Osteal Therapeutics, Inc. Completes Enrollment in APEX Phase 2 Clinical Trial of VT-X7 for Periprosthetic Joint Infection - November 6th, 2022
- PMV Pharmaceuticals Appoints Industry Veteran Dr. Carol Gallagher to Board of Directors - November 6th, 2022
- ORYZON to Give Updates on Corporate Progress in November - November 6th, 2022
- Terns Pharmaceuticals Highlights Results from Phase 1 Clinical Trial of TERN-501 at AASLD The Liver Meeting® 2022 - November 6th, 2022
- Aligos Therapeutics Presents Clinical Data for its NASH Program and Nonclinical Data for its Chronic Hepatitis B Portfolio at AASLD’s The Liver... - November 6th, 2022
- First U.S. patient receives autologous stem cell therapy to treat dry ... - October 29th, 2022
- BREAKTHROUGH TECHNOLOGY FOR IPS-DERIVED CELL THERAPIES TURNED INTO GMP PLATFORM BY TREEFROG THERAPEUTICS & INVETECH - Yahoo Finance - October 13th, 2022
- iPS-Cell Based Cell Therapies for Genetic Skin Disease - October 5th, 2022
- Jcr Pharmaceuticals Co., Ltd. and Sysmex Establish A Joint Venture in the Field of Regenerative Medicine and Cell Therapy - Marketscreener.com - October 5th, 2022
- MeiraGTx Announces the Upcoming Presentation of 15 Abstracts at the European Society of Gene and Cell Therapy (ESGCT) 2022 Annual Congress - Yahoo... - October 5th, 2022
- Stem Cells Market Size Expected to Reach USD 19.31 Billion by 2028: Increasing Number of Clinical Trials Across the Globe - Digital Journal - September 27th, 2022
- Implanting a Patient's Own Reprogrammed Stem Cells Shows Early Positive Results for Treating Dry AMD - Everyday Health - September 19th, 2022
- Current status of umbilical cord blood storage and provision to private biobanks by institutions handling childbirth in Japan - BMC Medical Ethics -... - September 19th, 2022
- Global Induced Pluripotent Stem Cells Market (2022 to 2027) - Growth, Trends, Covid-19 Impact and Forecasts - ResearchAndMarkets.com - Business Wire - September 11th, 2022
- Clinical translation of stem cell therapy for spinal cord injury still premature: results from a single-arm meta-analysis based on 62 clinical trials... - September 11th, 2022
- Improving the differentiation potential of pluripotent stem cells by optimizing culture conditions | Scientific Reports - Nature.com - August 26th, 2022
- New research digs into the genetic drivers of heart failure, with an eye to precision treatments - STAT - August 10th, 2022
- Creative Biolabs Leads the Forefront of iPSC Technology - Digital Journal - August 10th, 2022
- The zinc link: Unraveling the mechanism of methionine-mediated pluripotency regulation - EurekAlert - July 25th, 2022
- Live Cell Metabolic Analysis Paving the Way for Metabolic Research and Cell & Gene Therapy, Upcoming Webinar Hosted by Xtalks - Benzinga - July 16th, 2022
- PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press - July 8th, 2022
- Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ... - June 30th, 2022
- The benefits and risks of stem cell technology - PMC - June 30th, 2022
- The Future of Parkinson Disease Therapies and the Challenges With Stem Cell Therapies - Neurology Live - June 20th, 2022
- Umoja Biopharma and TreeFrog Therapeutics Announce Collaboration to Address Current Challenges Facing Ex Vivo Allogeneic Therapies in Immuno-Oncology... - June 11th, 2022
- Newsletter April 2022 - Progress in Cline's cell lab and in the stem cell therapy field - Marketscreener.com - April 29th, 2022
- Healios K K : Joint Research with the Division of Regenerative Medicine, the Institute of Medical Science for Developing a Mass Production Method of... - April 3rd, 2022
- A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy - March 22nd, 2022
- The Pipeline for of iPSC-Derived Cell Therapeutics in 2022 ... - March 22nd, 2022
- Cell Therapy Processing Market CAGR of 27.80% Share, Scope, Stake, Trends, Industry Size, Sales & Revenue, Growth, Opportunities and Demand with... - January 3rd, 2022
- Stem cell therapy for diabetes - PubMed Central (PMC) - November 22nd, 2021
- Stem cells: Therapy, controversy, and research - October 5th, 2021
- How much does stem cell therapy cost in 2021? - The Niche - October 5th, 2021
- "Stem cell-based therapeutics poised to become mainstream option - BSA bureau - October 5th, 2021
- Exclusive Report on Stem Cell Therapy in Cancer Market | Analysis and Opportunity Assessment from 2021-2028 |Aelan Cell Technologies, Baylx, Benitec... - August 6th, 2021
- Asia-Pacific Cell Therapy Market 2021-2028 - Opportunities in the Approval of Kymriah and Yescarta - PRNewswire - August 6th, 2021
- Base Editing as Therapy for Common Inherited Lung and Liver Disease Shows Promise - Clinical OMICs News - July 22nd, 2021
- MoHAP, EHS reveal immunotherapy for cancer, viral infections at Arab Health 2021 - WAM EN - June 25th, 2021
- Kiromic Announces Expansion of In-House Cell therapy cGMP Manufacturing Facility and the Appointment of Industry Veteran Ignacio Nez as Chief... - June 8th, 2021
- Cryopreservation Media helps in Development of a Cell Therapy for Parkinson's Disease - Microbioz India - June 8th, 2021
- Accelerated Biosciences' Immune-Privileged Human Trophoblast Stem Cells (hTSCs) Offer Breakthrough Opportunities in Cancer-Targeting Therapeutics and... - May 15th, 2021
- Factor Bioscience to Deliver Six Digital Presentations at the American Society of Gene & Cell Therapy (ASGCT) 24th Annual Meeting - PRNewswire - May 15th, 2021
- St. Jude's $11.5B, six-year plan aims to improve global outcomes for children with cancer and catastrophic diseases - The Cancer Letter - May 15th, 2021
- Synthego Launches Eclipse Platform to Accelerate Research and Development of Next-generation Medicines - The Scientist - April 19th, 2021
- The Google Play video app will leave Roku, Vizio, LG and Samsung's TV platforms - Yahoo Canada Finance - April 19th, 2021
- New Controversy for Stem Cell Therapy That Repairs Spinal Cords - The Great Courses Daily News - March 8th, 2021
- Brentuximab Vedotin Plus Chemotherapy Works as a Primary Option for Hodgkin Lymphoma - Targeted Oncology - March 8th, 2021
- Induction of muscle-regenerative multipotent stem cells from human adipocytes by PDGF-AB and 5-azacytidine - Science Advances - January 14th, 2021
- A Potential Therapy for One of the Leading Causes of Heart Disease - PRNewswire - December 10th, 2020
- Evotec and Sartorius Partner with Start-Up Curexsys on IPSC-Based Therapeutic Exosome Approach - BioSpace - December 9th, 2020