West Point: Bioprinting for Soldiers in the Battlefield – 3DPrint.com
By daniellenierenberg
Last summer, U.S. Army Lieutenant Colonel Jason Barnhill traveled to an undisclosed desert location in Africa with a ruggedized 3D printer and other basic supplies that could be used to biofabricate for field medical care, such as human mesenchymal stem/stromal cells (hMSCs). The aim was to discover how a 3D bioprinter could expedite healing and even replace damaged tissue for troops injured in combat.
Jason Barnhill with a 3D bioprinter that could replace damaged tissues for troops injured on the battlefield. (Image: Military Health System/West Point)
Barnhill, who is the life science program director of the United States Military Academy West Point Department of Chemistry and Life Sciences, is leading a project with a team of cadets working on experiments to advance bioprinting research in the field with an ultimate goal to develop technology for creating wound-healing biologics, bandages, and more for soldiers on-site or near the point-of-care. According to U.S. Army news, 26 first-class cadets at the United States Military Academy at West Point, in New York, are doing bioprinting research across seven different projects: two teams are working on biobandages for burn and field care; other two teams are working on how to bioengineer blood vessels to enable other bioprinted items that require a blood source, such as organs, to be viable; while one team is working on printing a viable meniscus, and another team is looking to print a liver.
A lot of this has to do with the bioink that we want to use, exactly what material were using as our printer ink, if you will, explained Class of 2020 cadet Allen Gong, a life science major conducting research for the meniscus project. Once we have that 3D model where we want it, then its just a matter of being able to stack the ink on top of each other properly.
Gong, along with his teammates, are researching how to use bioinks to create a meniscus that could be implanted into a soldiers injured knee, while other cadets are seeking to print a liver that could be used to test medicine and maybe one day eliminate the shortage of transplantable organs. This is not the first time we hear the U.S. Army is using bioprinting for regenerative medicine, after all, they often suffer from trauma, resulting in loss of limbs, injuries to the face and severe burns. Deployed soldiers confront the risks of battle on a daily basis. However, being able to have immediate access to specialized bioprinters created to solve catastrophic medical injuries could be the dream-scenario solution many have been waiting for.
In 2014, scientists at the Armed Forces Institute of Regenerative Medicine (AFIRM), established by the Department of Defense, were using 3D bioprinters extensively for skin repair research; but the Army is also actively developing artificial 3D printed hearts, blood vessels, and other organs in a quest to develop customizable and 3D printed medicine. Barnhills pilot program in 2019, conducted by the Uniformed Services University of the Health Sciences (USU) in collaboration with the U.S. Military Academy at West Point, has shown that a 3D printer capable of biofabrication could potentially change the way deployed warfighters receive care also. Under his direction, the 3D printer successfully fabricated a number of products, including a scalpel capable of immediate use and a hemostat (a surgical tool used to control bleeding during surgery and capable of gripping objects) while locking them into place to hold a tissue or other medical implements. The tools were made of a material that could be sterilized on-site, reducing the chance of infection during practical use.
Common combat injuries include second and third-degree burns, broken bones, shrapnel wounds, brain injuries, spinal cord injuries, nerve damage, paralysis, loss of sight and hearing, post-traumatic stress disorder (PTSD), and limb loss. Many of these injuries could be tackled with customizable, on-site bioprinting machines, but for now, the cadets on each of the teams are in the beginning stages of their research before starting the actual printing process. This stage includes reading the research already available in their area of focus and learning how to use the printers, and after spring break, they will have their first chance to start printing with cells. The teams focusing on biobandage, meniscus, and liver will try to print a tangible product by the end of the semester as part of the initial research.
Another cadet and life science major working on the meniscus project, Thatcher Shepard, described in the U.S. Army article that there are definitely some leaps before we can get to that point [of actually implanting what they print]. We have to make sure the body doesnt reject the new bioprinted meniscus and also the emplacement. There can be difficulties with that. Right now, were trying to just make a viable meniscus, then, well look into further research to be able to work on methods of actually placing it into the body.
They claim that the meniscus team is starting with magnetic resonance images (MRI) of knees and working to build a 3D model of a meniscus, which they will eventually be able to print. A great deal of the teams research will be figuring out how and when to implant those cells into the complex cellular structure they are printing.
Cadets at West Point Department of Chemistry and Life Sciences (Image: West Point)
According to Michael Deegan, another life science major and cadet working on one of the blood vessel projects, for now, it will involve a lot of research into what has already been done in the field and the questions that still need to be answered. He described the experience as kind of like putting the cart before the horse. Saying that youve printed it, great, but whats the point of printing it if its not going to survive inside your body? Being able to work on that fundamental step thats actually going to make these organs viable is what drew me and my teammates to be able to do this. Deegan and his colleagues will eventually decide on the scope and direction of their projects, knowing that their research will be key to allowing other areas of the field to move forward, since organs, such as livers and pancreases, have been printed, but so far, they can only be produced at the micro level because they have no blood flow.
While generating organs and blood vessels will be one of the great benefits of customized medicine in the future, the work behind the biobandage teams could have a direct use in the field during combat. The U.S. Army suggests that the goal is to be able to take cells from an injured soldier, specifically one who suffered burns and print a bandage with built-in biomaterial on it to jumpstart the healing process. Medical personnel could potentially be deployed with a 3D printer in their Forward Operating Base or it could be sent along in a column with a Humvee to enable bandages to be printed on-site.
Were researching how the body actually heals from burns, said Channah Mills, a life science major working on one of the biobandage projects. So, what are some things we can do to speed along that process? Introducing a bandage could kickstart that healing process. The faster you start healing, the less scarring and the more likely youre going to recover.
Being on the forefront of it and just seeing the potential in bioengineering, its pretty astounding, Gong said. But it has also been sobering just to see how much more complicated it is to 3D print biomaterials than plastic.
At the moment, the projects are building on existing research on printing sterile bandages and then adding a bioengineering element. The bandages would be printed with specialized skin and stem cells necessary for the healing process.
More than half of the cadets working on the bioprinting projects plan to continue on to medical school following their graduation from West Point. This research, which will be presented during the academys annual Projects Day on April 30, is a great starting point for the future army doctors, as they begin to understand and work on some of the more complex technologies that could become their allies in the future, helping them heal soldiers in the field.
Read more:
West Point: Bioprinting for Soldiers in the Battlefield - 3DPrint.com
- Bone marrow mesenchymal stem cells modulate miR-202-3p to suppress neuronal apoptosis following spinal cord injury through autophagy activation via... - December 9th, 2024
- Stem Cells Reveal Secret to Beneficial Proteins for mRNA Therapy - An Interview with Neuroscientist Prof. Dr. Antal Ngrdi - Szegedi Tudomnyegyetem - December 9th, 2024
- Much-anticipated human trial aiming to repair spinal cord damage about to begin - ABC News - October 21st, 2024
- The Science Of Health: Are Spinal Cord Injuries Irreversible? Know Science Advances That Can Cure Them In The Future - ABP Live - October 16th, 2023
- Evaluating the Growth Prospects of the Global Nerve Repair & Regeneration Market at a CAGR of 6.5% | Emergen - EIN News - April 21st, 2023
- Regenerative Therapies Market is Set to Grow at a CAGR of 8.7% by 2033, Propelled by Advancements in - EIN News - March 17th, 2023
- Kadimastem Submits IND Application to the FDA for its Phase IIa Clinical Trial with AstroRx for the Treatment of ALS - Marketscreener.com - February 21st, 2023
- My Back Is All F*cked Up 55-Year-Old Joe Rogan Curses at Worst Jiu-Jitsu for Painful Health Condition - EssentiallySports - February 21st, 2023
- Brain and Spinal Cord Tumors: Hope Through Research - January 3rd, 2023
- 14.3 The Brain and Spinal Cord Anatomy & Physiology - January 3rd, 2023
- Stem Cell Therapy for Spinal Cord Injury - PubMed - January 3rd, 2023
- Spinal cord injury - Diagnosis and treatment - Mayo Clinic - December 25th, 2022
- Spinal Cord Injury: Hope Through Research | National Institute of ... - December 1st, 2022
- Stem cell controversy - Wikipedia - October 13th, 2022
- Stem Cells Australia | Australian research, stem cell treatments and ... - October 13th, 2022
- The eye and stem cells: the path to treating blindness - October 13th, 2022
- World's first stem cell treatment for spina bifida delivered during fetal surgery - UC Davis Health - October 13th, 2022
- Fighting One Disease or Condition per Day - Daily Kos - October 13th, 2022
- UPDATE: NurExone Signs Letter of Intent with Nanometrix for Its Exosome and Cargo Molecular Profiling AI-Driven Technology - Yahoo Finance - October 13th, 2022
- Global Cell Therapy Market Report (2022 to 2028) - Featuring Thermo Fisher Scientific, MaxCyte, Danaher and Avantor Among Others -... - October 13th, 2022
- Horizon Therapeutics plc Announces New UPLIZNA (inebilizumab-cdon) Data in Neuromyelitis Optica Spectrum Disorder (NMOSD) to be presented at ECTRIMS... - October 13th, 2022
- Physiology, Spinal Cord - StatPearls - NCBI Bookshelf - October 5th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 ... - October 5th, 2022
- Revolutionary Jab that Could Repair Spinal Cord Injuries Developed by Scientists - Good News Network - October 5th, 2022
- How the 'Love Hormone' Oxytocin May Help Heal Heart Muscles - Healthline - October 5th, 2022
- Unlocking the Mysteries of Brain Regeneration Groundbreaking Study Offers New Insight - SciTechDaily - October 5th, 2022
- In Conversation: How to understand chronic pain - Medical News Today - October 5th, 2022
- New drug could cure aggressive brain cancer stopping tumours in their tracks... - The US Sun - September 27th, 2022
- Rehabilitating spinal cord injury and stroke with graphene and gaming - Nanowerk - September 19th, 2022
- Induced Pluripotent Stem Cells Market Reaches at a CAGR of 8.0% in the Forecast Periods [2021-2031] - BioSpace - September 19th, 2022
- Axolotls can regenerate their brains - Big Think - September 19th, 2022
- IMAC Holdings, Inc. Announces Completion of Third Cohort of its Phase 1 Clinical Study of Umbilical Cord-Derived Mesenchymal Stem Cells for the... - September 11th, 2022
- Spinal Muscular Atrophy: Causes and importance of early diagnosis for proactive management - Firstpost - September 11th, 2022
- Increasing Road Accidents and Fall Injuries among Aged Population Primarily Driving Need for Orthopedic Navigation Systems: Fact.MR Analysis - Yahoo... - September 3rd, 2022
- Culture of human nasal olfactory stem cells and their extracellular vesicles as advanced therapy medicinal products - Newswise - August 10th, 2022
- Curious kids: what is inside teeth? - The Conversation - August 10th, 2022
- Human placental mesenchymal stem cells derived exosomes improved functional recovery via attenuating apoptosis and increasing axonal regeneration... - August 2nd, 2022
- How the Regenerative Properties of Glioblastoma Can Be Terminated - Gilmore Health News - August 2nd, 2022
- New TSXV listing looks to address the $3B spinal cord injury treatment market (NRX.V) - FXStreet - July 25th, 2022
- Human iPSC co-culture model to investigate the interaction between microglia and motor neurons | Scientific Reports - Nature.com - July 25th, 2022
- Negligence in treatment of diseases like glioblastoma can be fatal, seminar told - The News International - July 25th, 2022
- What lab-grown cerebral organoids are revealing about the brain - New Scientist - July 25th, 2022
- Innovative Therapies, Care Equity Highlight 2022 ASCO Annual Meeting - Targeted Oncology - July 16th, 2022
- Global Stem Cell Manufacturing Market Value Projected To Reach USD 21.71 Billion By 2029, Registering A CAGR Of 9.1% - Digital Journal - July 16th, 2022
- Stem Cell Therapy Market Is Expected To Reach USD 455.61 Billion By 2027 At A CAGR Of 16 percent By Forecast 2027 Says Maximize Market Research (MMR)... - June 30th, 2022
- This startup wants you to have a personal stem cell stash - Freethink - June 30th, 2022
- Parents of 12-Year-Old Boy Praying for a Miracle, Appealing UK Judge's Decision to Remove Life Support - CBN.com - June 30th, 2022
- The end of Roe v. Wade affects more than just abortion - Vox.com - June 30th, 2022
- Horizon Therapeutics plc Submits Regulatory Filing for UPLIZNA (inebilizumab) in Brazil - Business Wire - June 20th, 2022
- Effect of Electrical Stimulation on Spinal Cord Injury: In Vitro and In Vivo Analysis - Newswise - June 11th, 2022
- First-of-its-Kind Stem Cell and Gene Therapy Highlighted at Annual Stem Cell Meeting - Newswise - June 11th, 2022
- UK Judge to Decide if 12-Year-Old Will Be Removed from Life Support, Parents Beg for More Time to Heal - CBN.com - June 11th, 2022
- 'This is my life, and I'll try anything to save it': Woman with MS raising funds for treatment - The Brandon Sun - May 29th, 2022
- Racing Thoughts: Quadriplegic Man Drives Race Car With His Brain - Newsy - May 29th, 2022
- Physical therapy for vertigo: Exercises, benefits, and more - Medical News Today - May 29th, 2022
- Researchers find new function performed by almost half of brain cells - Medical News Today - May 13th, 2022
- Texas Family Fights to Access $2.1 Million Treatment for Baby - NBC 5 Dallas-Fort Worth - May 13th, 2022
- Severe COVID-19 may cause cognitive deficits equivalent to 20 years of aging - Medical News Today - May 13th, 2022
- Stem Cell Magic: 5 Promising Treatments For Major Medical Conditions - Study Finds - April 29th, 2022
- Neural Stem Cell Therapy For Spinal Cord Injury To Tap Into The Potential Of Stem Cells - Optic Flux - April 15th, 2022
- Still Blooming: Sams mission to raise money for spinal cord injury research - 7NEWS - April 15th, 2022
- Lineage and Cancer Research UK Announce Completion of Patient Enrollment in Phase 1 Clinical Study of VAC2 for the Treatment of Non-small Cell Lung... - April 15th, 2022
- Lineage Announces Pipeline Expansion to Include Auditory Neuronal Cell Therapy for Treatment of Hearing Loss - Galveston County Daily News - March 22nd, 2022
- COVID-19: Even mild to moderate infection may cause brain anomalies - Medical News Today - March 22nd, 2022
- Scots mum with MS says 50k treatment abroad is 'last hope' of halting disease - Daily Record - January 18th, 2022
- Mending the gap: U of T's Molly Shoichet joins team developing new treatments for spinal cord injuries - News@UofT - January 18th, 2022
- Spinal Cord Injury Information Page | National Institute ... - January 3rd, 2022
- Dancing molecules successfully repair severe spinal cord ... - January 3rd, 2022
- Best 2021 Medical Breakthroughs And Treatments to Beat Cancer, Alzheimer's, Diabetes & More - Good News Network - January 3rd, 2022
- Global Regenerative Medicine Market is Expected to Reach USD 57.08 Billion by 2027, Growing at a CAGR of 11.27% Over the Forecast Period. -... - December 23rd, 2021
- Scientists unravel a gene function that helps the genesis of neurons - Research Matters - December 23rd, 2021
- The 10 Most Compelling Research Stories of 2021 PharmaLive - PharmaLive - December 23rd, 2021
- 2021: The year in review | YaleNews - Yale News - December 23rd, 2021
- Polymyositis Pipeline to Progress with New and Emerging Drugs for Treatment, Analyzes DelveInsight - GlobeNewswire - December 10th, 2021
- Cell and Gene Therapy Market to reach US$ 47,095.2 Mn by end of 2028, Says Coherent Market Insights - PRNewswire - November 22nd, 2021
- From asthma to cancer to infertility, the new treatments, jabs and meds making us healthier... - The Sun - November 22nd, 2021
- Improving motor neuron-like cell differentiation of hEnSCs by the combination of epothilone B loaded PCL microspheres in optimized 3D collagen... - November 8th, 2021
- Akiko Nishiyama Explains the Many Strengths of a Degree in Physiology and Neurobiology - UConn Today - UConn Today - October 28th, 2021
- Team finds way to enhance stem cell therapy for CNS injuries - BioPharma-Reporter.com - October 28th, 2021
- 'Rogue' antibodies found in brains of teens with delusions and paranoia after COVID-19 - Livescience.com - October 28th, 2021