What is New in Cardiology? A Review of All Major Emerging Technologies for Heart Diseases – Diagnostic and Interventional Cardiology
By daniellenierenberg
This is an overview of some of the biggest cardiology technology advances. These innovations are covered in more detail in the two-volume set titled "Emerging Technologies in Heart Diseases." These innovative technologies mark the midway of a technological revolution in patient care. Here are a list of 10 noteworthy new cardiac technologies:
The emergence of a ventricular assist device (VAD) has revolutionized the care of patients with advanced heart failure. Primarily developed as a bridge to transplantation, the VAD has been shown to prolong life and to improve the quality of life when a donor heart is not found. Older versions required the implantation of a bulky pump and required patients to ambulate with heavy, large external batteries and control units. Yet, several revolutionary improvements in device size, battery reliability, and even wireless charging technologies might make these devices physically unnoticeable in the coming years, and possibly decrease patient susceptibility to infections. In addition, various mechanical modifications and newer modes of operation have limited the rates of hemolysis, thrombosis, and secondary aortic valve insufficiency.
Miniature VAD. Source: Watt et al. Artificial Mechanical Hearts and Ventricular Assist Devices. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 25-40.
Atrial fibrillation (AF or AFib) remains a leading cause of stroke, which in turn may be associated with devastating health consequences and mortality. Yet, oral anticoagulants and left atrial appendage (LAA) occlusion devices may not be appropriate for all patients or may be associated with life-threatening complications. In recent years, novel, device-based technologies for stoke prevention have evolved. Some focused on carotid implants, while newer devices have been designed for continuous embolic filtration at the level of the common aortic pathway. These approaches, which are currently being tested in preclinical studies, might be translated in the near future to treatments available for patients with increased bleeding risks.
Lariat LAA closure device device (SentreHeart Inc, Redwood, Calif.). Source: Goel et al. Percutaneous closure of the left atrial appendage for stroke prevention. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 961-977.
Related LAA Occlusion Content:
VIDEO: Overview of Left Atrial Appendage (LAA) Closure Technology and New Innovations Interview with Horst Sievert, M.D.
COVID-19 Boosts Demand for Left Atrial Appendage Closure Devices Market
VIDEO: Overview of LAA Occlusion Using the Watchman FLX Interview with Devi Nair, M.D.
Conformal electronics are flexible, stretchy, electronic devices that can diagnose and treat tissue malfunctions. They have high spatiotemporal resolution and are comprised of a system of various sensors and transducers. Conformal electronics assess multiple parameters to monitor and regulate cardiac tissue functions by following the shape of the epicardium or endocardium. The technology of conformal electronics can transform the current model of cardiac diagnostics and therapeutics by enabling the development of new equipment. Also, new minimally invasive methods to access the epicardial tissue are likely to facilitate clinical adoption of this technology.
Flexible electronics attached to the heart for cardiac monitoringSource: Yin et al. Organ Conformal Electronics for Cardiac Therapeutics. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 911-937.
Transcatheter Mitral Valve Repair (TMVR) technologies are expanding rapidly. They have the potential to become alternatives to surgery for specific patients. TMVR devices can be differentiated according to the portion of the mitral valve they are intended to repair: the leaflet, the annulus, or the chordae, and to remodel the ventricles. To date, early results of novel TMVR technologies seem promising but the long-term sustainability and effectiveness have not been determined. Yet, given the advancements in transcatheter technologies, it is convincible that in the future, mitral regurgitation will be treated mainly using a minimally invasive approach.
Carillon Mitral Contour System from Cardiac Dimensions can can be implanted for to reshape the annulus using TMVR. Source: Colli et al. Transcatheter Mitral Valve Therapies for Degenerative and Functional Mitral Regurgitation. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 417-461.
Tissue engineering techniques that use cells and regenerative medicine to treat heart disease, are promising new approaches in cardiovascular research. Scaffolds (i.e., biomaterials used as supports), cells and appropriate growth factors are needed to enable reconstruction of new tissue. Because the biomaterial is integral to the functional integrity and attachment of human cells, generating the ideal scaffold remains one of the most challenging aspect of tissue engineering. A decellularized heart composed of native extracellular matrix can provide a complex, unique, and natural scaffold that offers the physical and chemical signals required for cardiac function.
Isolated cadaveric heart prior to and following decellularization. Source: Taylor, et al. Decellularization of Whole Hearts for Cardiac Regeneration. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 291-310.
Patients with hemodynamic compromise may not be optimally balanced with an intra-aortic balloon pump (IABP). Therefore, various devices have been developed to provide other advanced measures of circulatory support. Although most centers have limited experience with these devices, they may be lifesaving in specific patients. Also, extracorporeal oxygenation (ECMO) provides patients the opportunity to avoid mechanical ventilation. This will prevent possible decreases in blood pressure due to anesthesia and reduced venous return. Small, portable devices aimed at providing ventilatory and circulatory support are being developed for these critical cases.
The Maquet CardioHelp ECMO system is an example of a small, lightweight, portable ECMO.
The global burden of congenital or acquired heart valve defects is high. Bioprosthetic or mechanical replacement valves are often used, although they have limitations. This is especially true for pediatric patients who continue to grow. A potential solution is developing an in situ tissue engineering approach. A synthetic, bioresorbable scaffold might lead to individualized replacements for heart valves. These might be less prone to infections and more suitable for pediatric populations.
Bioresorbable synthetic scaffold generated using electrospinning techniques. Source: Klouda et al. Heart Valve Tissue Engineering: Current Preclinical and Clinical approaches. In: Emerging Technologies for Heart Diseases, Vol. 1 - Treatments for Heart Failure and Valvular Disorders. 2020; Elsevier, Academic Press (AP). Pages 383-398.
Cardiac arrhythmias are a leading cause of morbidity and mortality worldwide. Although rhythm disorders may be efficiently treated with implantable cardioverter defibrillators (ICDs), the ability to accurately determine which patients will benefit from these measures is currently limited. Also, in patients who do not have an intracardiac device, delivery of external defibrillatory shocks shortly after the onset of arrhythmia may be lifesaving. Therefore, many efforts are invested in increasing the ability to predict upcoming events and calling for medical assistance. Computational tools generally known as artificial intelligence (AI) may soon enhance our ability to predict the occurrence of life-threatening arrhythmias and thereby, provide earlier preventive and the therapeutic interventions. The increase in the use of wearable cardiac monitoring devices and the ability to provide advanced analysis of ECG and other electrophysiological data are expected to further revolutionize the field of machine learning-based diagnostics in cardiology.
The consumer-grade Fitbit Sense offers AI to automatically detect atrial fibrillation. Read more in the articleFitbit ECG App to Identify Atrial Fibrillation Receives Regulatory Clearance in U.S. and Europe.
Related Content on Wearables and Big Data in Healthcare:
Tracking Cardiovascular Health Population Trends Using Consumer Wearables
Bristol-Myers Squibb-Pfizer Alliance, Fitbit Team Up on Atrial Fibrillation Detection
Artificial Intelligence Detects AFib Using Apple Watch Heart Rate Sensor
Consumer Smart Watches Accurately Measure Paroxysmal Supraventricular Tachycardia
VIDEO: Use of Wearables to Track Electrophysiology Patients Interview with Khaldoun Tarakji, M.D.
VIDEO: The Future of Wearables in Healthcare Karl Poterack, M.D.
Catheter ablation is used to prevent ventricular arrhythmias by damaging or destroying the causative tissue. Due to difficulties targeting the appropriate tissue, advanced technologies are needed. Electrophysiologic mapping has advanced significantly along with the techniques and tools that can be used to effectively eliminate the arrhythmic substrate. Combining these tools in the electrophysiology (EP) lab with robotic navigation systems may lead to more precise ablation procedures for difficult cases, while reducing exposure to radiation.
Stereotaxis Genesis Robotic Magnetic Navigation System, the latest system from the vendor with its first two installs taking place in 2020. Source: AbdelWahab et al. Electrophysiologic Mapping and Cardiac Ablation therapy for Prevention of Ventricular Tachycardia. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. 2020; Elsevier, Academic Press (AP). Pages 683-723.
Related Robotic EP Lab Content:
VIDEO: Virtual Tour of the Robotic Electrophysiology Lab at Banner Health
VIDEO: Advantages of Robotic Ablation in the EP Lab Interview with Peter Weiss, M.D.
Time to Take Another Look at Robotics in Electrophysiology
Cardiac devices may be associated with complications including repeated need for battery replacement, lead failure, infections, and limited applicability in young patients. Recent, major breakthroughs in induced pluripotent stem cells technologies and transdifferentiation approaches may revolutionize treatment of bradyarrhythmias and heart failure. Ventricular and pacemaker cells have been generated both in vitro and in vivo in preclinical models. Upscaling technology based on cell (and gene) grafts to the organ level, ensuring graft survival, and guaranteeing long-term safety are needed before these innovative methods can be used to replace electrical cardiac pacemakers and to treat patients with heart failure.
TBX18 over expression induces transdifferentiation of cardiac myocytes towards pacemaker-like cells. Source: Vgh et al. Molecular therapies for bradyarrhythmias. In: Emerging Technologies for Heart Diseases, Vol. 2 - Treatments for Myocardial Ischemia and Arrhythmias. Elsevier, Academic Press (AP). Pages 811-840.
About the author: Udi Nussinovitch M.D., Ph.D., is the editor of the two-volume set titled "Emerging Technologies in Heart Diseases Vol. 1" and "Emerging Technologies in Heart Diseases Vol. 2."The books cover all the major technologies in use or under development, for the treatment of cardiovascular disorders. The books present information systematically and are the only reference that attempts to address the technological aspects of cardiovascular treatments. They present a very interesting read for anyone involved in the biomedical field, cardiovascular researchers and cardiologists, who aspire to learn about currently available technologies as well those in the pipeline.
Nussinovitch graduated from the Sackler Faculty of Medicine, Tel Aviv University, and received training at the Sheba Medical Center, Rambam Healthcare Center and Meir Medical Center, while concurrently earning a Ph.D. in cardiac electrophysiology from the Technion Institute of Technology, Haifa, Israel. Dr. Nussinovitch has dedicated his research to investigating novel therapeutic approaches for cardiac disorders and modulating the cardiac electrophysiologic substrate for therapeutic purposes. He is the Director of the Applicative Cardiovascular Research Center (ACRC), affiliated with Tel Aviv University. Dr. Nussinovitch founded several biotech companies, including InVatin Technologies and InSpira Oxygenation Technologies. He performs his clinical work at Meir Medical Center, a medical facility and leading referral center in Israel.
- Can The Heart Heal Itself? Expert Explains Breakthroughs In Cardiac Regeneration - Onlymyhealth - January 14th, 2025
- Science fiction turned reality? Stem cell therapy set to repair child's heart - Ynetnews - January 5th, 2025
- Cardiac stem cell biology: a glimpse of the past, present, and future - PMC - December 27th, 2024
- Secretome Therapeutics Closes $20.4 Million Financing Round to Advance Cardiomyopathy and Heart Failure Therapies - Business Wire - November 29th, 2024
- Developing the Cell-Based Therapies of the Future - University of Miami - November 15th, 2024
- Advancing heart stem cell therapy - UHN Foundation - November 15th, 2024
- Heart defects affect 40,000 US babies every year but cutting edge AI and stem cell tech will save lives and even cure them in the womb - New York... - November 15th, 2024
- Science Is Finding Ways to Regenerate Your Heart - The Wall Street Journal - November 6th, 2024
- AIIMS Bathinda Makes Breakthrough in Stem Cell Therapy Research for Heart Ailments - Elets - October 21st, 2024
- USC launches collaboration with StemCardia to advance heart regeneration therapies - University of Southern California - October 13th, 2024
- The heart is a resident tissue for hematopoietic stem and progenitor cells in zebrafish - Nature.com - September 3rd, 2024
- Opthea Announces Results of the A$55.9m (US$36.9m¹) Retail Entitlement Offer - July 16th, 2024
- Benitec Biopharma Reports Continued Durable Improvements in the Radiographic Assessments of Swallowing Efficiency and the Subject-Reported Outcome... - July 16th, 2024
- AstraZeneca Closes Acquisition of Amolyt Pharma - July 16th, 2024
- Addex Presents Positive Results from GABAB PAM Cough Program at the Thirteenth London International Cough Symposium (13th LICS) - July 16th, 2024
- Lexeo Therapeutics Announces Positive Interim Phase 1/2 Clinical Data of LX2006 for the Treatment of Friedreich Ataxia Cardiomyopathy - July 16th, 2024
- ANI Pharmaceuticals Announces the FDA Approval and Launch of L-Glutamine Oral Powder - July 16th, 2024
- MediWound Announces $25 Million Strategic Private Placement Financing - July 16th, 2024
- Atsena Therapeutics Appoints Joseph S. Zakrzewski as Board Chair - July 16th, 2024
- ASLAN Pharmaceuticals Announces Receipt of Nasdaq Delisting Determination; Has Determined Not to Appeal - July 16th, 2024
- Kraig Biocraft Laboratories Completes Phase One of its Spider Silk Production Facility Expansion - July 16th, 2024
- Pliant Therapeutics Announces Positive Long-Term Data from the INTEGRIS-PSC Phase 2a Trial Demonstrating Bexotegrast was Well Tolerated at 320 mg with... - July 16th, 2024
- Oncternal Announces Enrollment Completed and Dosing Initiated for Sixth Dose Cohort of Phase 1/2 Study of ONCT-534 for the Treatment of R/R Metastatic... - July 16th, 2024
- Rectify Pharmaceuticals Appoints Bharat Reddy as Chief Business Officer - July 16th, 2024
- Spectral AI Continues Support of Naked Short Selling Inquiry - July 16th, 2024
- Milestone Pharmaceuticals Refreshes Board of Directors - July 16th, 2024
- New Published Data Highlights Potential Cost-Savings of INPEFA® (sotagliflozin) for Heart Failure - July 16th, 2024
- Regenerative medicine can be a boon for those with Drug-Resistant Tuberculosis - Hindustan Times - April 21st, 2023
- Cardiac stem cells: Current knowledge and future prospects - April 13th, 2023
- Stem cell therapies in cardiac diseases: Current status and future ... - April 13th, 2023
- Stem Cell and Regenerative Biology | Johns Hopkins Heart and Vascular ... - April 13th, 2023
- Center for Regenerative Biotherapeutics - Cardiac Regeneration - April 13th, 2023
- MAGENTA THERAPEUTICS, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 25th, 2023
- CAREDX, INC. MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - March 1st, 2023
- A Possible Connection between Mild Allergic Airway Responses and Cardiovascular Risk Featured in Toxicological Sciences - Newswise - February 4th, 2023
- Baby's life saved by surgeon who carried out world's first surgery ... - December 25th, 2022
- An organoid model of colorectal circulating tumor cells with stem cell ... - December 25th, 2022
- Skeletal Muscle Cell Induction from Pluripotent Stem Cells - December 1st, 2022
- Stem-cell niche - Wikipedia - December 1st, 2022
- Scientists Discover Protein Partners that Could Heal Heart Muscle | Newsroom - UNC Health and UNC School of Medicine - October 13th, 2022
- Global Induced Pluripotent Stem Cell ((iPSC) Market to Reach $0 Thousand by 2027 - Yahoo Finance - October 13th, 2022
- Scientists Spliced Human Brain Tissue Into The Brains of Baby Rats - ScienceAlert - October 13th, 2022
- Decoding the transcriptome of calcified atherosclerotic plaque at single-cell resolution | Communications Biology - Nature.com - October 13th, 2022
- Global Synthetic Stem Cells Market Is Expected To Reach Around USD 42 Million By 2025 - openPR - October 13th, 2022
- Merck and Moderna Announce Exercise of Option by Merck for Joint Development and Commercialization of Investigational Personalized Cancer Vaccine -... - October 13th, 2022
- Regenerative Medicine For Heart Diseases: How It Is Better Than Conventional Treatments | TheHealthSite.co - TheHealthSite - October 5th, 2022
- 'Love hormone' oxytocin could help reverse damage from heart attacks via cell regeneration - Study Finds - October 5th, 2022
- Recapitulating Inflammation: How to Use the Colon Intestine-Chip to Study Complex Mechanisms of IBD - Pharmaceutical Executive - September 27th, 2022
- Adult Stem Cells // Center for Stem Cells and Regenerative Medicine ... - September 19th, 2022
- CCL7 as a novel inflammatory mediator in cardiovascular disease, diabetes mellitus, and kidney disease - Cardiovascular Diabetology - Cardiovascular... - September 19th, 2022
- Kite's CAR T-cell Therapy Yescarta First in Europe to Receive Positive CHMP Opinion for Use in Second-line Diffuse Large B-cell Lymphoma and... - September 19th, 2022
- Neural crest - Wikipedia - September 3rd, 2022
- Rise In Number Of CROS In Various Regions Such As Europe Is Expected To Fuel The Growth Of Induced Pluripotent Stem Cell Market At An Impressive CAGR... - September 3rd, 2022
- Discover the Mental and Physical Health Benefits of Fasting - Intelligent Living - September 3rd, 2022
- Heart Association fellowship to support research - Binghamton - August 26th, 2022
- Repeated intravenous administration of hiPSC-MSCs enhance the efficacy of cell-based therapy in tissue regeneration | Communications Biology -... - August 26th, 2022
- High intensity interval training protects the heart against acute myocardial infarction through SDF-1a, CXCR4 receptors and c-kit levels - Newswise - August 26th, 2022
- Yale University: Uncovering New Approaches to a Common Inherited Heart Disorder | India Education - India Education Diary - August 10th, 2022
- Heart failure in obesity: insights from proteomics in patients treated with or without weight-loss surgery | International Journal of Obesity -... - August 10th, 2022
- Pigs died after heart attacks. Scientists brought their cells back to life. - Popular Science - August 10th, 2022
- Protocol for a Nested, Retrospective Study of the Australian Placental Transfusion Study Cohort - Cureus - August 10th, 2022
- Autologous Cell Therapy Market Size to Grow by USD 4.11 billion, Bayer AG and Brainstorm Cell Therapeutics Inc. Among Key Vendors - Technavio - PR... - August 2nd, 2022
- UTSW researcher part of team awarded $36 million heart research grant - The Dallas Morning News - August 2nd, 2022
- Buffalo center fuels research that can save your life from heart disease and stroke - Buffalo News - August 2nd, 2022
- Hyperglycaemia-Induced Impairment of the Autorhythmicity and Gap Junction Activity of Mouse Embryonic Stem Cell-Derived Cardiomyocyte-Like Cells -... - July 25th, 2022
- NASA's Solution to Stem Cell Production is Out of this World - BioSpace - July 25th, 2022
- Inhibition of pancreatic EZH2 restores progenitor insulin in T1D donor | Signal Transduction and Targeted Therapy - Nature.com - July 25th, 2022
- 'My Teen Sweetheart And I Drifted Apart. 30 Years Later I Made a Shocking Discovery' - Newsweek - July 25th, 2022
- EU: New Blood? Proposed Revisions to the EUs Blood, Tissues and Cells Rules - GlobalComplianceNews - July 25th, 2022
- Stem Cells Market to Expand at a CAGR of 10.4% from 2021 to 2028 Travel Adventure Cinema - Travel Adventure Cinema - July 25th, 2022
- Cell Separation Technologies Market Expands with Rise in Prevalence of Chronic Diseases, States TMR Study - GlobeNewswire - July 25th, 2022
- Dental Membrane and Bone Graft Substitutes Market to Exceed Value of US$ 1,337 Mn by 2031 - PR Newswire UK - July 25th, 2022
- Stem Cells Used to Repair Heart Defects in Children - NBC 5 Dallas-Fort Worth - July 16th, 2022
- Pneumonia and Heart Disease: What You Should Know - Healthline - July 16th, 2022
- Promising solution to fatal genetic-disorder complications discovered by University professor and Ph.D. candidate - Nevada Today - July 16th, 2022
- Current and advanced therapies for chronic wound infection - The Pharmaceutical Journal - July 16th, 2022
- Why do some women struggle to breastfeed? A UCSC researcher on what we know, and don't - Lookout Santa Cruz - July 16th, 2022
- Mesenchymal stem cells: from roots to boost - PMC - July 8th, 2022
- New study allows researchers to more efficiently form human heart cells from stem cells - University of Wisconsin-Madison - July 8th, 2022
- Dr Victor Chang saved hundreds of lives. 31 years ago today, he was murdered. - Mamamia - July 8th, 2022