What makes stem cells into perfect allrounders – Phys.org – Phys.Org

By raymumme

June 27, 2017 Just a few days old embryonic cell clusters: with functional Pramel7 (left), without the protein (right) the development of the stem cells remains stuck and the embyos die. Credit: Paolo Cinelli, USZ

Researchers from the University of Zurich and the University Hospital Zurich have discovered the protein that enables natural embryonic stem cells to form all body cells. In the case of embryonic stem cells maintained in cell cultures, this allrounder potential is limited. Scientists want to use this knowledge to treat large bone fractures with stem cells.

Stem cells are considered biological allrounders because they have the potential to develop into the various body cell types. For the majority of stem cells, however, this designation is too far-reaching. Adult stem cells, for example, can replace cells in their own tissue in case of injury, but a fat stem cell will never generate a nerve or liver cell. Scientists therefore distinguish between multipotent adult stem cells and the actual allrounders - the pluripotent embryonic stem cells.

Epigenetic marks determine potential for development

Differences exist even among the true allrounders, however. Embryonic stem cells that grow in laboratory cell cultures are in a different state than the pluripotent cells found inside the embryos in the first days of development. In a study in the journal Nature Cell Biology, researchers led by Paolo Cinelli of the University Hospital Zurich and Raffaella Santoro of the University of Zurich have now demonstrated the mechanism by which natural allrounders differ from embryonic stem cells in cultures.

At the center of their discovery is a protein called Pramel7 (for "preferentially expressed antigen in melanoma"-like 7) found in the cells of embryonic cell clusters that are just a few days old. This protein guarantees that the genetic material is freed from epigenetic marks consisting of chemical DNA tags in the form of methyl groups. "The more methyl groups are removed, the more open the Book of Life becomes," Cinelli says. Since any cell of the human body can develop from an embryonic stem cell, all genes have to be freely accessible at the beginning. The more a cell develops or differentiates, the stronger its genetic material is methylated and "sealed closed" again. In a bone cell, for example, only those genes are active that the cell requires for its function, the biochemist explains.

Protein is responsible for perfect pluripotency

Despite its short action period of just a few days, Pramel7 seems to play a vital role: When the researchers headed up by Cinelli and Santoro switched off the gene for this protein using genetic tricks, development remained stuck in the embryonic cell cluster stage. In the cultivated stem cells, on the other hand, Pramel7 is rarely found. This circumstance could also explain why the genetic material of these cells contains more methyl groups than that of natural embryonic cells - the perfect allrounders, as Cinelli calls them.

Using the stem cell function to regenerate bone tissue

His interest in stem cells lies in the hope of one day being able to help people with complex bone fractures. "Bones are great at regenerating and they are the only tissue that does not build scars," Paolo Cinelli says. The bone stumps must be touching, however, in order to grow together. When a bone breaks in multiple places and even through the skin, for example, in a motorcycle accident, the sections of bone in between are often no longer usable. For such cases, a bone replacement is required. His team is studying carrier materials that they want to populate with the body's own stem cells in the future. "For this reason, we have to know how stem cells work," Cinelli adds.

Explore further: New tools to study the origin of embryonic stem cells

More information: Urs Graf et al, Pramel7 mediates ground-state pluripotency through proteasomalepigenetic combined pathways, Nature Cell Biology (2017). DOI: 10.1038/ncb3554

Researchers at Karolinska Institutet have identified cell surface markers specific for the very earliest stem cells in the human embryo. These cells are thought to possess great potential for replacing damaged tissue but ...

An International Reserach Team coordinated by Igb-Cnr has discovered a key role of vitamins and amino acids in pluripotent stem cells. The research is published in Stem Cell Reports, and may provide new insights in cancer ...

Scientists have discovered the gene essential for chemically reprogramming human amniotic stem cells into a more versatile state similar to embryonic stem cells, in research led by UCL and Heinrich Heine University.

Pre-eclampsia is a disease that affects 5 to 8 percent of pregnancies in America. Complications from this disease can lead to emergency cesarean sections early in pregnancies to save the lives of the infants and mothers. ...

Oxygen in the air is well known to cause damaging rust on cars through a process known as oxidation. Similarly, a research group at Lund University in Sweden, has now identified that certain cells during embryonic development ...

Human stem cells that are capable of becoming any other kind of cell in the body have previously only been acquired and cultivated with difficulty. Scientists at the Max Delbrck Center for Molecular Medicine (MDC) in the ...

Photosynthesis is one of the most complicated and important processesresponsible for kick-starting Earth's food chain. While we have modeled its more-than-100 major steps, scientists are still discovering the purpose of ...

Whether or not society shakes its addiction to oil and gasoline will depend on a number of profound environmental, geopolitical and societal factors.

The actions of a protein used for DNA replication and repair are guided by electrostatic forces known as phosphate steering, a finding that not only reveals key details about a vital process in healthy cells, but provides ...

Worker and queen honeybees exposed to field realistic levels of neonicotinoids die sooner, reducing the health of the entire colony, a new study led by York University biologists has found.

Scientists from The University of Texas at Austin took an important step toward safer gene-editing cures for life-threatening disorders, from cancer to HIV to Huntington's disease, by developing a technique that can spot ...

If aliens sent an exploratory mission to Earth, one of the first things they'd noticeafter the fluffy white clouds and blue oceans of our water worldwould be the way vegetation grades from exuberance at the equator ...

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the original post here:
What makes stem cells into perfect allrounders - Phys.org - Phys.Org

Related Post


categoriaSkin Stem Cells commentoComments Off on What makes stem cells into perfect allrounders – Phys.org – Phys.Org | dataJune 30th, 2017

About...

This author published 822 posts in this site.
Teacher, Educator, Speaker, Adult Stem Cell Advocate

Share

FacebookTwitterEmailWindows LiveTechnoratiDeliciousDiggStumbleponMyspaceLikedin

Comments are closed.





Personalized Gene Medicine | Mesenchymal Stem Cells | Stem Cell Treatment for Multiple Sclerosis | Stem Cell Treatments | Board Certified Stem Cell Doctors | Stem Cell Medicine | Personalized Stem Cells Therapy | Stem Cell Therapy TV | Individual Stem Cell Therapy | Stem Cell Therapy Updates | MD Supervised Stem Cell Therapy | IPS Stem Cell Org | IPS Stem Cell Net | Genetic Medicine | Gene Medicine | Longevity Medicine | Immortality Medicine | Nano Medicine | Gene Therapy MD | Individual Gene Therapy | Affordable Stem Cell Therapy | Affordable Stem Cells | Stem Cells Research | Stem Cell Breaking Research

Copyright :: 2024