Why Glucose Restrictions Are Essential in Treating Cancer – The Epoch Times
By daniellenierenberg
The procedure recommended by most doctors might not always be a good option, as it could turn a potentially benign situation into a malignant one.
Thomas Seyfried, Ph.D., professor in the biology department at Boston College, is a leading expert and researcher in the field of cancer metabolism and nutritional ketosis. His book, Cancer as a Metabolic Disease: On the Origin, Management and Prevention of Cancer is a foundational textbook on this topic, and in August 2016, he received the Mercola.com Game Changer Award for his work.
Here, we discuss the mechanisms of cancer and the influence of mitochondrial function, which plays a crucial role in the development and treatment of this disease. Hislandmark cancer theory is available as a free PDF.
Many of his views are now encapsulated in his most paper,1Mitochondrial Substrate-Level Phosphorylation as Energy Source for Glioblastoma: Review and Hypothesis, published online December 27, 2018. Hes also published a number of other papers2,3,4on the metabolic underpinnings of cancer.
The paper is a review and hypothesis paper identifying the missing link in Otto Warburgs central theory,Seyfried explains. [Warburg] defined the origin of cancer very accurately back in the 1920s, 30s, 40s and 50s in his work in Germany. Basically, he argued and provided data showing that all cancer cells, regardless of tissue origin, were fermenters. They fermented lactic acid from glucose as a substrate.
Even in the presence of oxygen, these cells were fermenting. This is clearly a defect in oxidative phosphorylation. The problem is that for decades, people said Warburg was wrong mainly because we see a lot of cancer cells take up oxygen and make adenosine triphosphate (ATP) from within the mitochondria People began to question, If cancer cells have normal respiration, why would they want to use glucose as a fermentable fuel?
The whole concept became distorted The cancer cells simply choose to ferment rather than respire. Now, of course, if you look under the electron microscope at majority of cancers, youll see that the mitochondria are defective in a number of different ways. Their structures are abnormal. The numbers are abnormal. There are many abnormalities of mitochondria seen directly under electron microscopy. Clearly, Warburg was not wrong.
Before we delve into the meat of how cancer actually occurs it would be good to review a diagnostic strategy that nearly all of us are offered when confronted with a cancer diagnosis. It is vital to understand that this may not be your best strategy and that for many it would be wise to avoid the biopsy.
Seyfried warns against doing biopsies, as this procedure may actually cause the cancer to spread. A tumor is basically a group of proliferating cells in a particular part of your body. For purposes of diagnosis, a small biopsy sample will often be taken to ascertain whether the tumor is benign or malignant.
The problem is that when you stab into the cancer microenvironment to remove a part of the tissue, it creates a wound in that microenvironment that in turn elicits the invasion by macrophages and other immune cells.
If you already have an acidic microenvironment, you run the risk of causing a fusion hybridization event in that microenvironment between your macrophages and cancer stem cells (as discussed below). This could turn a potentially benign situation into a malignant one, and if the tumor is malignant, stabbing into it could make a bad situation worse.
The question is, what is the value of doing a biopsy in the first place? We take biopsies of breast tissue to get a genomic readout of the different kinds of mutations that might be in the cells. Now, if cancer is not a genetic disease and the mutations are largely irrelevant, then it makes no sense to do that in the first place. If the tumor is benign, why would you want to stab it? If the tumor is malignant, why would you ever want to stab it?
I came to this view by reading so many articles in the literature based on brain cancer, breast cancer, colon cancer, liver cancer showing how needle biopsies have led to the dissemination of these tumor cells, putting these people at risk for metastatic cancer and death,Seyfried says.
In metabolic therapy you would not touch the tumor; you would not disturb the microenvironment. By leaving it alone, you allow the tumor to shrink and go away.
When you start to look at this as a biological problem, many of the things that we do in cancer make no sense. We have, in brain cancer, people say, You have a very low-grade tumor. Lets go in and get it out. What happens is you go in and get it out, and then the following year it turns into a glioblastoma.
How did that happen? Well, you disturbed the microenvironment. You allowed these cells that are marginally aggressive to become highly aggressive. Then you lead to the demise of the patient,Seyfried says.
That happens significantly because its called secondary glioblastoma arising from therapeutic attempt to manage a low-grade tumor. The same thing can happen with all these different organs. You stab breast tumors, you stab colon tumors, you run the risk of spreading the cells
My argument is the following: If the patient has a lump, whether its in the breast, in the colon, lung or wherever or a lesion of some sort, that should be the cue to do metabolic therapy.
Do metabolic therapy first. In all likelihood, it will shrink down and become less aggressive. Then the option becomes, Should we debulk completely rather than doing some sort of a biopsy? We want to reduce the risk, because if we can catch the whole tumor completely, then we dont run the risk of spreading it
In our procedure, you bring the body back into a very high state of metabolic balance, and then you strategically go and degrade the tumors slowly without harming the rest of the body.
Radiation, chemo and the strategies that were using today dont do this. Theyre based on the gene theory of cancer that genetic mutations are causing the cell cycle to grow out of control. Well, this is not the case. Again, a lot of these toxic procedures need to be rethought, reanalyzed in my mind.
In biology, structure determines function. This is an evolutionarily conserved concept. So, how can mitochondria be structurally abnormal in tissue, yet have normal respiration? As Seyfried notes, this doesnt make sense. Confusion has arisen in part because many study cancer in culture, and make profound statements and comments regarding what happens in culture, Seyfried says.
If you look at cancer cells in culture, many of them do take in oxygen and make ATP, but at the same time, theyre fermenting. This was the conundrum. They called it the Warburg Effect. Theyre fermenting, but many people at the same time thought their respiration was normal.
This was the main problem with Warburgs theory. But Warburg clearly said in his papers [that] its not the fact that they take in oxygen; its how much ATP they can generate from oxidative phosphorylation, which is the normal respiratory capacity of the mitochondria.
As explained by Seyfried, if you measure ATP and look at oxygen consumption in tumor cells, it appears theyre making ATP and taking in oxygen, therefore, their respiration is assumed to be normal. However, when you look at the tissues in cancer patients, the mitochondria are abnormal.
What I and Dr. Christos Chinopoulos from Semmelweis University in Budapest, Hungary, who is the world-leading expert on mitochondrial physiology and biochemistry realized [was] that the mitochondria of tumor cells are actually fermenting amino acids, glutamine in particular. Theyre not respiring. Theyre fermenting an alternative fuel, which is glutamine,Seyfried says.
With this understanding, Warburgs theory can be proven correct cancer arises from damage to the mitochondrias ability to produce energy through respiration in their electron transport chain.
The compensatory fermentation involves not only lactic acid fermentation, but also succinic acid fermentation using glutamine as a fermentable fuel. Its been known for decades that glutamine is a main fuel for many different kinds of cancers, but most people thought it was being respired, not fermented.
Seyfried and Chinopoulos discovery confirms that cancer cells in fact have damaged respiration, and to survive, the cancer cells must use fermentation. The two most available fermentable fuels in the cancer microenvironment are glucose and glutamine. Hence, targeting glucose and glutamine is a crucial component of cancer treatment.
Without glucose and glutamine, the cancer cells will starve, as they cannot use ketones. The simplest approach to cancer then is to bring patients into therapeutic ketosis, and then strategically target the availability of glucose and glutamine.
Basically, what were saying [is] that mitochondrial substrate-level phosphorylation is a non-oxidative metabolism mechanism inside the mitochondria that would generate significant amounts of energy without oxidative phosphorylation,Seyfried says.
According to Seyfried, mitochondrial dysfunction is at the heart of nearly every type of cancer. Unfortunately, few oncologists have this understanding and many still believe cancer is the result of genetic defects. However, nuclear transfer experiments clearly show cancer cannot be a genetic disease.
Theres been no rational scientific argument that I have seen, to discredit the multitude of evidence showing that the [genetic] mutations are not the drivers but the effects [of mitochondrial dysfunction],Seyfried says.
As a matter of fact, theres new information now where people are finding so-called genetic drivers of cancer expressed and present in normal cells, normal skin and also esophagus This is another [issue] how you get these so-called driver mutations in normal tissues. Were also finding some cancers that have no mutations, yet, theyre fermenting and growing out of control.
There are a number of new observations coming out that challenge the concept that cancer is a genetic disease. And once you realize that its not a genetic disease, then you have to seriously question the majority of therapies being used to manage the disease. This [helps] explain [why] we have 1,600 people a day dying from cancer in the United States.
Why do we have such an epidemic of suffering and death when we have been studying this disease for decades? Well, if you look at the massive amounts of scientific papers being written on cancer, youll often find that theyre structured around gene defects.
What Im saying is that if cancer is not a genetic disease and the mutations are downstream epiphenomena, why would the field continue to focus on things that are mostly irrelevant to the nature of the disease? What Im saying is very devastating, because Im telling the majority of the people in the field that theyre basically wasting their time
I think we can drop the death rate of this disease by about 50% in 10 years if cancer is treated as a mitochondrial metabolic disease, targeting fermentable fuels rather than using toxic therapies that are focused on downstream effects.
Radiation is designed to stop DNA replication. DNA replication requires energy. If you pull the plug on their fermentable fuels, theyre not going to be able to replicate anyway All of the things that were doing to treat cancer is basically approaching the disease from a misunderstanding of the biology
We know viruses can cause cancer. We know radiation causes cancer. We know carcinogens cause cancer. We know intermittent hypoxia causes cancer. We know systemic inflammation causes cancer. We know just getting older puts you at risk for more cancer.
We know there are inherited mutations in the genome that can cause cancer. But how are all these things linked through a common pathophysiological mechanism? The common pathophysiological mechanism is damaged through the structure and function of the mitochondria.
Every one of the issues including inherited mutations, damage the respiration of a particular population of cells in a tissue. You look at the breast cancer gene (BRCA 1), for example. People will say, Cancer must be a genetic disease because you inherit a mutation that causes the disease.
You only get the disease if that mutation disrupts the function of the mitochondria. Fifty percent of women who carry the mutation never get cancer or breast cancer because the mutation, for some reason, did not damage the mitochondria in that person.
So, to summarize, the true origin of cancer is damage to the respiratory function of the mitochondria, triggering compensatory fermentation, which is run by oncogenes. Oncogenes play a role by facilitating the entry of glucose and glutamine into the cell to replace oxidative phosphorylation.
Seyfried also has a very different view on the biology of metastasis (the spread of cancer). He explains:
Weve looked at cancer stem cells in a number of our preclinical models These guys grow like crazy in place. The tumor just keeps expanding, but it doesnt spread. It doesnt spread into the bloodstream or metastasize to various organs.
We discovered a very unusual cancer 20 years ago. It took us 10 to 15 years to figure out what it was. You can put a few of these cells anywhere in the mouses body and within three to four weeks, this mouse is full of metastatic cancer. It made the cover of the International Journal of Cancer, when we published this back in 2008, but we had worked on the problem for years.
We couldnt figure out what it was that made these cells so incredibly metastatic. We found out that once we identified the biology of the cell, it turned out [it has] many characteristics in common with the macrophage, which is one of the most powerful immune cells in our body.
We said, Wow. Is this unique only to this kind of cell or do metastatic cancers in humans also express characteristics of macrophages? We looked and we found that almost every major cancer that metastasizes has characteristics of macrophages. Then we said, Well, how could this possibly happen? Is it coming from the macrophage?
A number of scientists have all clearly shown that there is some fusion hybridization character going on. In other words, macrophages, our wound-healing cells, they come into a microenvironment where you might find many proliferating neoplastic stem cells, but they dont have the capacity to metastasize.
Its only when the macrophages fuse with these stem cells that you have a dysregulated energy metabolism coming in this hybrid cell. This hybrid cell now has characteristics of both stem cells and macrophages.
The stem cell is not genetically equipped to enter and exit tissue. The macrophage, as a normal cell of your body, is genetically equipped to enter and exit tissue and live in the bloodstream. Theyre very strongly immunosuppressive. These are all characteristics of metastatic cancer.
According to Seyfried, metastatic cancer cells are essentially a hybrid, a mix of an immune system cell and a dysregulated stem cell, the latter of which could originate from a disorganized epithelial cell or something similar. In short, its a hybrid cell with macrophage characteristics.
Macrophages are essential for wound healing and part of our primary defense system against bacterial infections. They live both in the bloodstream and in tissues, and can go anywhere in the body. When an injury or infection occurs, they immediately move in to protect the tissue.
The metastatic cancer cell has many of those same properties,Seyfried explains,But the energy and the function of the cell is completely dysregulated, so it proliferates like crazy but has the capacity to move and spread through the body, so its a corrupted macrophage. We call it a rogue macrophage.
Like macrophages, metastatic cancer cells can also survive in hypoxic environments, which is why most angiogenic therapies are ineffective against metastatic cancer.
So, what do these metastatic hybrid cells need to survive? Both macrophages and immune cells are major glutamine consumers, and according to Seyfried, you can effectively kill metastatic cells by targeting glutamine.
However, it must be done in such a way so as to not harm the normal macrophages and the normal immune cells. In other words, it must be strategic. For this reason, Seyfried developed a press-pulse therapy for cancer, which allows the patient to maintain normal immune system function, while at the same time targeting the corrupted immune cells the macrophage fusion hybrid metastatic cells as well as inflammation.
The therapies we are using to attempt to kill these [metastatic] cells put us at risk for having the cells survive and kill us. You can control these cells for a short period of time, but they can hunker down and enter into some sort of a slightly dormant state, but they reappear.
People say, Oh, these tumor cells are so nifty and smart they can come back at you. The problem is youve never really challenged them on their very existence, which is they depend on fermentation to survive. If you dont target their fermentation, theyre going to continue to survive and come back at you.
Many of the therapies that we use radiation, chemo and some of these other procedures are not really going after the heart of the problem. That oftentimes puts you at risk for the recurrence of the disease. Your body is already seriously weakened by the toxic treatments. And in the battle, you lose. If you are fortunate enough to survive your body is still beat up.
You have now put your [body] at risk for other kinds of maladies Why are we using such toxic therapies to kill a cell when we know what its weaknesses are? These are the paradigm changes that will have to occur as we move into the new era of managing cancer in a logical way.
To properly address cancer, then, you need to clean up the microenvironment, because the microenvironment will strategically kill cells that are dependent on fermentation while enhancing cells that arent. At the same time, the microenvironment will also reduce inflammation.
You also have to be very careful not to kill your normal and healthy immune cells, because they need glutamine too,Seyfried says. What we find is that when we strategically attack the tumor this way, it turns out that our immune cells are paralyzed.
The cancer cells are killed, but the normal immune cells are paralyzed. Theyre not dying, theyre just not doing their job. What we do is we back off the therapy a little; allow the normal immune cells to regain their biological capacity, pick up dead corpses, heal the microenvironment, and then we go after the cancer cells again.
Its a graded response, knowing the biology of the normal cells and the abnormal biology of the tumor cells. This is a beautiful strategy. Once people know how you can play one group of cells off another, and how you can strategically kill one group of cells without harming the other cells, it really becomes a precision mechanism for eliminating tumor cells without harming the rest of the body.
You dont need to be poisoned and irradiated. You just have to know how to use these procedures to strategically kill the cells. Protecting normal macrophages is part of the strategic process. Killing the corrupted ones is part of the strategic process. Again, you have to put all of these together in a very logical path. Otherwise, youre not going to get the level of success that we should be getting.
This strategy is what Seyfried calls press-pulse treatment, and essentially involves restricting the fermentable fuels glucose and glutamine in a cyclical fashion to avoid causing damage to normal cells and tissues. Glucose is effectively restricted through a ketogenic diet. Restricting glutamine is slightly trickier.
The press-pulse strategy was developed from the concept of press-pulse in the field of the paleobiology. A press was some chronic stress on populations, killing off large numbers, but not everything, because some organisms can adapt to stress. The pulse refers to some catastrophic event.
The simultaneous occurrence of these two unlikely events led to the mass extinction of almost all organisms that existed on the planet. This was a cyclic event over many hundreds of millions of years. The geological records show evidence for this press-pulse extinction phenomenon.
What we simply did was take that concept and say, Lets chronically stress the tumor cells. They need glucose. You can probably kill a significant number of tumor cells by just stressing their glucose. Thats the press. The press is different ways to lower blood sugar. You put that chronic stress on top of the population either by restricted ketogenic diets [or] therapeutic fasting. There are a lot of ways that you can do this.
Also, emotional stress reduction. People are freaked out because they have cancer, therefore their corticoid steroids are elevated, which elevates blood sugar. Using various forms of stress management, moderate exercise all of these will lower blood sugar and contribute to a chronic press and stress on the cancer cells.
However, youre not going to kill all cancer cells if you just take away glucose. Because the other fuel thats keeping the beast alive is the glutamine. We have to pulse, because we cant use a press for glutamine targeting, because then youre going to kill your normal immune cells or impair them, and they are needed for the eventual resolution of the disease.
What were going to do is were going to pulse various drugs. We dont have a diet system that will target glutamine. Glutamine is everywhere. Its the most abundant amino acid in your body But you have to use [the drugs] very strategically; otherwise they can harm our normal immune system and then be counterproductive
I think that once we understand how we can target effectively glutamine without harming our normal immune cells this is the strategy that will make most of these other therapies obsolete Its cost-effective and non-toxic and it will work very well.
But were still at the very beginning of this. We need to continue to develop the doses, timing and scheduling of those drugs that are most effective in targeting glutamine that can be done without harming the rest of the cells in our body.
If you would like to support Dr. Seyfrieds research, please consider making a donation to the Foundation For Metabolic Cancer Therapies. The donation tag is on the top row of the of the foundationsite. This Foundation is dedicated to supporting Dr. Seyfrieds studies using metabolic therapy for cancer management with 100% of the donated funds going directly to research on metabolic therapy for cancer.
Originally published July 31, 2022 on Mercola.com
Views expressed in this article are the opinions of the author and do not necessarily reflect the views of The Epoch Times. Epoch Health welcomes professional discussion and friendly debate. To submit an opinion piece, please follow these guidelines and submit through our form here.
The rest is here:
Why Glucose Restrictions Are Essential in Treating Cancer - The Epoch Times
- Skin science: Latest stories on cosmetics science and formulation - CosmeticsDesign-Asia.com - November 15th, 2024
- The Firsthand Results Of A Nanofat Treatment Using Stem Cells And PRP - Forbes - November 15th, 2024
- Boundary-Pushing Skin Care Company Exoceuticals Garners Beauty Innovation Award For 'Beauty Innovation Technology Of The Year - The Manila Times - November 15th, 2024
- New skin research could help slow signs of ageing - BBC.com - October 21st, 2024
- Human skin map gives 'recipe' to build skin and could help prevent scarring - Medical Xpress - October 21st, 2024
- A new cell therapy company takes its vision from four founders, and its skin from George Church - STAT - September 23rd, 2024
- Women 60+ love this hydrating stem cell-infused moisturizer that's $15 right now - Yahoo Life - September 23rd, 2024
- NKGen Biotech Publishes Phase 1 Interim Analysis Results of SNK02 Allogeneic NK Cell Therapy in Advanced Solid Tumors at the 2024 American Society of... - May 25th, 2024
- FibroGen Announces Presentation of Positive Interim Data from the Phase 1b Study of FG-3246 (FOR46) in Combination with Enzalutamide in Patients with... - May 25th, 2024
- Cogent Biosciences Appoints Cole Pinnow as Chief Commercial Officer - May 25th, 2024
- G1 Therapeutics Announces Upcoming Presentation at the 2024 American Society of Clinical Oncology (ASCO) Meeting - May 25th, 2024
- Updated Phase 1 Clinical Data for SYS-6002 (CRB-701) to be presented at 2024 ASCO Annual Meeting - May 25th, 2024
- Affimed Announces Positive Early Efficacy and Progression Free Survival Results of AFM24-102 Study in EGFR Wild-Type Non-Small Cell Lung Cancer at the... - May 25th, 2024
- SpringWorks Therapeutics Announces Data to be Presented at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Sensei Biotherapeutics Presents Promising Clinical Data from Phase 1 Dose Escalation Study of SNS-101 - May 25th, 2024
- Elicio Therapeutics Announces Preliminary Data from the Ongoing AMPLIFY-7P Phase 1a Study of ELI-002 7P in Patients with mKRAS-driven Solid Tumors at... - May 25th, 2024
- Kronos Bio to Present Clinical Update on Phase 1/2 Trial of KB-0742 at the 2024 American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Coherus Presents Preliminary Results from Phase I Dose Escalation Study of its Anti-chemokine receptor 8 (CCR8) Antibody, CHS-114, at the 2024... - May 25th, 2024
- 3Daughters to Participate in Women’s Health Panel During the 2024 BIO International Convention in San Diego, CA, June 3-6 - May 25th, 2024
- HUTCHMED Highlights Presentations at the 2024 ASCO Annual Meeting - May 25th, 2024
- Myriad Genetics Showcases New Research and Product Innovations Advancing Cancer Care at 2024 ASCO® Annual Meeting - May 25th, 2024
- Lift BioSciences Announces Abstract Publications at the American Society of Clinical Oncology (ASCO) Annual Meeting - May 25th, 2024
- Nicox: 2024 Ordinary Shareholder Meeting to be held on June 28th, 2024 - May 25th, 2024
- Adlai Nortye Ltd. to Present Encouraging Data of the Combination of AN0025 and Definitive Chemoradiotherapy (dCRT) at ASCO 2024 - May 25th, 2024
- Vitamin A could have a key role in both stem cell biology and wound healing: Study - Medical Dialogues - March 10th, 2024
- Cyclerion Strengthens Board of Directors with Experienced Company Builder and Cutting-edge Innovator - December 4th, 2023
- Aptose Appoints Fletcher Payne Chief Business Officer, Expanding his Executive Role - December 4th, 2023
- Opthea to Present at the FLORetina 2023 Congress - December 4th, 2023
- HUTCHMED Highlights Clinical Data to be Presented at 2023 ESMO Asia and ESMO Immuno-Oncology Congresses - December 4th, 2023
- AC Immune Strengthens Management, Appoints Madiha Derouazi as CSO and Christopher Roberts as CFO - December 4th, 2023
- Publication of a transparency notification received from Tolefi SA (Article 14 §1 of the Law of 2 May 2007) - December 4th, 2023
- Annovis Bio Appoints Andrew Walsh as Vice President Finance - December 4th, 2023
- Foghorn Therapeutics Announces Clinical Data from Phase 1 Study of FHD-286, a Novel BRG1/BRM Inhibitor, in Patients with Advanced Hematologic... - December 4th, 2023
- Akari Therapeutics Appoints Experienced Life Sciences Entrepreneur Samir R. Patel, M.D. to Board of Directors - December 4th, 2023
- Ovid Therapeutics to Present Five Abstracts Supporting its Epilepsy Programs at the 77th American Epilepsy Society Annual Meeting (2023) - December 4th, 2023
- Spectral Medical Announces CFO Departure - December 4th, 2023
- Are STEM CELL EXOSOMES the secret to a 'snatched' jawline? Discover the products that influencers are claiming - Daily Mail - November 18th, 2023
- Defence Mechanisms: Four ways your body is protecting you every time you fall sick - indulgexpress - May 16th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, 111SKIN, Nest & More - E! NEWS - May 16th, 2023
- INTERNATIONAL STEM CELL CORP MANAGEMENT'S DISCUSSION AND ANALYSIS OF FINANCIAL CONDITION AND RESULTS OF OPERATIONS (form 10-K) - Marketscreener.com - April 5th, 2023
- Skin Regeneration: The Science and How to Boost It - Healthline - March 9th, 2023
- Treat Yourself to a Spa Day With a $100 Deal on $600 Worth of Products From Elemis, U Beauty, Nest & More - E! NEWS - March 1st, 2023
- 7-year-old vows to find a cure for brother in need of bone marrow transplant - WJLA - February 21st, 2023
- World's most radioactive man 'cried blood' as his skin melted in 83-day nightmare - Times Now - February 4th, 2023
- How old are you, really? The answer is written on your face. - National Geographic UK - February 4th, 2023
- Skin: Layers, Structure and Function - Cleveland Clinic - January 27th, 2023
- Human skin | Definition, Layers, Types, & Facts | Britannica - January 27th, 2023
- Skin Disorders: Pictures, Causes, Symptoms, and Treatment - Healthline - January 27th, 2023
- Skin care: 5 tips for healthy skin - Mayo Clinic - January 27th, 2023
- Skin Care and Aging | National Institute on Aging - January 27th, 2023
- Wrinkles - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Dry skin - Symptoms and causes - Mayo Clinic - January 27th, 2023
- Stem cells: a brief history and outlook - Science in the News - January 3rd, 2023
- Still Drinking Green Tea? Doctor Reveals A Healthier Drink With Proven Benefits For Diabetes, Aging, Oxidative Stress, And Cancer - Revyuh - January 3rd, 2023
- RUDN Physician And Russian Scientists Investigate Long-term Effects Of Treating Diabetic Ulcers With Stem Cells - India Education Diary - December 25th, 2022
- The Use of Stem Cells in Burn Wound Healing: A Review - Hindawi - December 1st, 2022
- FACTORFIVE Skincare The Power of Stem Cells for Skin - December 1st, 2022
- Embryonic Stem Cells - The Definitive Guide | Biology Dictionary - December 1st, 2022
- From pro soccer hopeful to hip hop artist with illness and addiction along the way, Tymaz Bagbani releases debut album - Toronto Star - December 1st, 2022
- Stem Cells | The ALS Association - November 22nd, 2022
- What is a stem cell? YourGenome - October 29th, 2022
- Skin Cell - The Definitive Guide | Biology Dictionary - October 29th, 2022
- Explora Journeys Plans Extensive Fitness And Well-Being Initiatives At Sea, Right On Trend - Forbes - October 29th, 2022
- Ahead of the holiday shopping season, Amazon kicks off second annual Holiday Beauty Haul on Oct. 24 - KXAN.com - October 21st, 2022
- Human skin color - Wikipedia - October 13th, 2022
- Mesenchymal Stem Cells | Properties, Process, Functions, & Therapies - October 13th, 2022
- Skin Grafting, Cryopreservation, and Diseases: A Review Article - Cureus - October 13th, 2022
- Anti-ageing cosmetics: Can they turn back the hands of the clock? - The Sunday Guardian Live - The Sunday Guardian - October 13th, 2022
- Brennand named Elizabeth Mears and House Jameson Professor of Psychiatry - Yale News - October 13th, 2022
- The Switch to Regenerative Medicine - Dermatology Times - October 13th, 2022
- Last Chance to Get The Collagen-Infused Massage Oil That Moisturizes Skin & Diminishes Cellulite For Less Than $20 - msnNOW - October 13th, 2022
- Addison's Disease Explained: Causes, Symptoms, And Treatments - Health Digest - October 13th, 2022
- Stem Cells Therapy for Autism: Does it Work? - October 5th, 2022
- Stem-like CD8 T cells mediate response of adoptive cell ... - PubMed - October 5th, 2022
- 6 Under Eye Products You Need To Have STAT - Grazia India - October 5th, 2022
- CellResearch Corporation (CRC) to present promising new stem cell products for the treatment of chronic diabetic foot ulcers at the world's premier... - September 27th, 2022
- Reprogramming pig cells leads way for new regenerative therapies - National Hog Farmer - September 27th, 2022
- A glimpse into Indian consumers expectations for cosmetic treatments and consumption insights - The Financial Express - September 27th, 2022
- Tajmeel redefines beauty to give its patients the best results - Gulf News - September 27th, 2022
- Here Is Why You Heal Slower As You Age - Health Digest - September 27th, 2022